Skip to main content

MILLISECOND PULSAR ORIGIN OF THE GALACTIC CENTER GEV EXCESS

Image: The Milky Way. Credit: Serge Brunier

Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the inner Galaxy, at energies around a few GeV. This excess attracted great attention, because it has properties typical for a dark matter annihilation signal.


Proposed diffuse emission mechanisms, like leptonic or hadronic outbursts or cosmic-ray injection in the central molecular zone, potentially explain part of the excess emission. However, it is challenging to explain all of the above aspects of the GCE with these mechanisms alone.

The most plausible astrophysical interpretation for the Galactic center eccess (GCE) is the combined emission from a large number of unresolved millisecond pulsars (MSPs) in the Galactic bulge region. Recently, it was shown that the spatial distribution of MSPs that were spilled out of disrupted globular clusters can explain the morphology of the GCE.


Image: SNR of the wavelet transform
of γ-rays with energies in the range 1-4 GeV.
Credit: Bartels et al. 2016
In a rencent paper (Bartels et al. 2016), using almost seven years of Fermi-LAT data, the authors detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10,8 σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission.

The authors argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation.


The paper (Bartels et. al 2016) is available online and is published in the PhRvL >>
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.051102
http://arxiv.org/pdf/1506.05104v2.pdf

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is