Skip to main content

Posts

Showing posts from March 12, 2017

Dark Matter Less Influential in Galaxies in Early Universe

Figure 1: New observations indicate that massive, star-forming galaxies during the peak epoch of galaxy formation, 10 billion years ago, were dominated by baryonic or “normal” matter. This is in stark contrast to present-day galaxies, where the effects of mysterious dark matter seem to be much greater. This surprising result was obtained using ESO’s Very Large Telescope and suggests that dark matter was less influential in the early Universe than it is today. The research is presented in four papers, one of which will be published in the journal Nature this week. Credit: ESO/L. Calçada We see normal matter as brightly shining stars, glowing gas and clouds of dust. But the more elusive dark matter does not emit, absorb or reflect light and can only be observed via its gravitational effects. The presence of dark matter can explain why the outer parts of nearby spiral galaxies rotate more quickly than would be expected if only the normal matter that we can see directly were prese

The Cone Nebula from Hubble

Figure 1 : The Cone Nebula. Credit: Hubble Legacy Archive, NASA, ESA - Processing & Licence : Judy Schmidt Stars are forming in the gigantic dust pillar called the Cone Nebula. Cones, pillars, and majestic flowing shapes abound in stellar nurseries where natal clouds of gas and dust are buffeted by energetic winds from newborn stars. The Cone was captured in unprecedented detail in this close-up composite of several observations from the Earth-orbiting Hubble Space Telescope (Fig.1). The Cone Nebula, a well-known example, lies within the bright galactic star-forming region NGC 2264 (Fig.2). Figure 2 : This colour image of the region known as NGC 2264 — an area of sky that includes the sparkling blue baubles of the Christmas Tree star cluster and the Cone Nebula — was created from data taken through four different filters (B, V, R and H-alpha) with the Wide Field Imager at ESO's La Silla Observatory, 2400 m high in the Atacama Desert of Chile in the foothills of

Dark Neutron Stars

Illustration of a neutron star. Credit: NASA/Dana Berry There is good evidence that electron-positron pair formation is not present in that section of the pulsar open magnetosphere which is the source of coherent radio emission, but the possibility of two-photon pair creation in an outer gap remains. Calculation of transition rates for this process based on measured whole-surface temperatures, combined with a survey of gamma-ray, X-ray and optical luminosities, expressed per primary beam lepton, shows that few Fermi LAT pulsars have significant outer-gap pair creation. For radio-loud pulsars with positive polar-cap corotational charge density and an ion-proton plasma there must be an outward flow of electrons from some other part of the magnetosphere to maintain a constant net charge on the star. In the absence of pair creation, it is likely that this current is the source of GeV gamma-emission observed by the Fermi LAT and its origin is in the region of the outer gap. With n