Skip to main content

Posts

Showing posts from February 21, 2016

A METHOD TO TEST THE EXISTENCE OF REGULAR BLACK HOLES

Illustration of a black hole. Image Credit & Copyright: Alain Riazuelo The existence of the singularity is an intrinsic problem of the General Relativity (GR). At the fundamentally level, the resolution of the problem of the singularity lies with the expectation that under situations where quantum effects become strong, the behavior of gravity could possibly greatly deviate from that predicted by the classical theory of GR. Regular black hole solution are proposed with the same spacetime geometry outside the horizon as the traditional black hole, but bears no singularity inside. Whether or not black hole singularities should exist, they would be covered by the black hole horizon. The black hole horizon serves as an information curtain hindering outside observers from directly observing the interior structure of the black hole, and determining that whether or not the black hole singularity does really exist. A method is needed to check the correctness of the new constructions ...

A DARK MATTER HALO AS SOURCE OF GAMMA-RAYS?

Image: Illustration of a dark matter halo around the Milky Way. Credit: ESO/L. Calçada. The gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. In a recent paper (Bertoni et al. 2016) the authors use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. They argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. The authors...

A NEW EVOLUTIVE SCENARIO FOR THE JUPITER'S CORE?

Image: This artist's conception shows a Jupiter-sized planet forming from a disk of dust and gas surrounding a young, massive star. - NASA Astronomers have discovered nearly 500 planetary systems each with multiple planets, and typically these systems include a few planets with masses several times greater than Earth's (super-Earths), orbiting closer to their star than Mercury is to the Sun, and Jupiter-like gas giants are also often found close to their star. [2]

BOUNCING BLACK HOLES

Image: Illustration of a dusty supermassive black hole. Credit: ESA/NASA, the AVO project and Paolo Padovani Black holes could be bouncing stars as a consequence of quantum gravity: when the density of matter becomes high enough, quantum gravity effects generate sufficient pressure to compensate the matter's weight, the collapse ends, and matter bounces out. In a black hole, matter's collapse could stop before the central singularity is formed.

ARE THE TWO BLACK HOLES OBSERVED BY LIGO PRODUCED FROM THE COLLAPSE OF A SINGLE STAR?

Image: Simulation of two colliding black holes. Animation created by SXS, the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org) - Caltech LIGO If the GW signal observed by LIGO is due to the merger of two isolated black holes (BHs) in vacuum, no electromagnetic counterparts are expected. However, Fermi observed a signal 0.4 s after LIGO in a region of space compatible with the GW source.

TESTING THE SPEED OF GRAVITATIONAL WAVES OVER COSMOLOGICAL DISTANCES

Image: Merging black holes ripple space and time in this artist's concept. Credit: Swinburne Astronomy Productions On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) observed a transient gravitational-wave signal from a black hole-black hole binary (BHBH) inspiral.

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

REMAIN SOME POSSIBILITIES FOR ALTERNATIVE THEORIES OF GRAVITY?

Image: Numerical simulations of the gravitational waves emitted by the inspiral and merger of two black holes. The colored contours around each black hole represent the amplitude of the gravitational radiation; the blue lines represent the orbits of the black holes and the green arrows represent their spins. Credit: C. Henze/NASA Ames Research Center The observation of gravitational-wave signal by LIGO and VIRGO, corresponding to the inspiral and merger of two black holes, are consistent with the Einstein theory of gravity with high accuracy limited mainly by the statistical error.