Skip to main content

Posts

Showing posts from October 22, 2017

Why the clocks changing are great for your brain

Angela Clow , University of Westminster and Nina Smyth , University of Westminster October is a dismal time of year. The clocks go back, which accelerates the onset of darker evenings and the “shorter days” inevitably lead to calls for the tradition of putting clocks forward or backward to stop. Of course, the annual return to Greenwich Mean Time (GMT) from British Summer Time (BST) doesn’t make the days any shorter, it merely shifts an hour of available daylight from the evening to the morning. For many, lighter evenings are a priority and little attention is given to the benefits of lighter mornings. Arguments over clock changes tend to revolve around benefits for easier travel in lighter evenings. Nevertheless research suggests that holding onto lighter mornings might have hitherto unforeseen advantages. Light in the morning – more than any other time of day – leads to powerful brain-boosting effects , helping us to function as best we can, despite the approaching...

Small Asteroid or Comet 'Visits' from Beyond the Solar System

This animation shows the path of A/2017 U1, which is an asteroid -- or perhaps a comet -- as it passed through our inner solar system in September and October 2017. From analysis of its motion, scientists calculate that it probably originated from outside of our solar system. Credits: NASA/JPL-Caltech A small, recently discovered asteroid -- or perhaps a comet -- appears to have originated from outside the solar system, coming from somewhere else in our galaxy. If so, it would be the first "interstellar object" to be observed and confirmed by astronomers. This unusual object – for now designated A/2017 U1 – is less than a quarter-mile (400 meters) in diameter and is moving remarkably fast. Astronomers are urgently working to point telescopes around the world and in space at this notable object. Once these data are obtained and analyzed, astronomers may know more about the origin and possibly composition of the object. A/2017 U1 was discovered Oct. 19 by the Universit...

NASA SDO Image: Jack-o-Lantern Sun

Image captured by NASA's Solar Dynamics Observatory  Credit: NASA/SDO Active regions on the sun combined to look something like a jack-o-lantern’s face on Oct. 8, 2014. The image was captured by NASA's Solar Dynamics Observatory, or SDO, which watches the sun at all times from its orbit in space. The active regions in this image appear brighter because those are areas that emit more light and energy.  They are markers of an intense and complex set of magnetic fields hovering in the sun’s atmosphere, the corona. This image blends together two sets of extreme ultraviolet wavelengths at 171 and 193 Ã…ngströms, typically colorized in gold and yellow, to create a particularly Halloween-like appearance. Credit: NASA/SDO Next Post Dawn Finds Possible Ancient Ocean Remnants at Ceres  

Dawn Finds Possible Ancient Ocean Remnants at Ceres

This animation shows dwarf planet Ceres as seen by NASA's Dawn. The map overlaid at right gives scientists hints about Ceres' internal structure from gravity measurements. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Minerals containing water are widespread on Ceres, suggesting the dwarf planet may have had a global ocean in the past. What became of that ocean? Could Ceres still have liquid today? Two new studies from NASA's Dawn mission shed light on these questions. The Dawn team found that Ceres' crust is a mixture of ice, salts and hydrated materials that were subjected to past and possibly recent geologic activity, and that this crust represents most of that ancient ocean. The second study builds off the first and suggests there is a softer, easily deformable layer beneath Ceres' rigid surface crust, which could be the signature of residual liquid left over from the ocean, too. "More and more, we are learning that Ceres is a complex, dynamic world ...

Hubble Observes Exoplanet that Snows Sunscreen

This is an artist’s impression of the exoplanet Kepler-13Ab as compared in size to several of the planets in the Solar System. The behemoth exoplanet is six times more massive than Jupiter. Kepler-13Ab is also one of the hottest known planets, with a dayside temperature of about 2700 °C. It orbits very close to the star Kepler-13A, which lies at a distance of 1730 light-years from Earth. Credit: NASA, ESA, and A. Feild (STScI) Nighttime Titanium Oxide Snow Leaves Dayside Cloud-Free and Cooler Travelers to the nightside of exoplanet Kepler-13Ab should pack an umbrella because they will be pelted with precipitation. But it's not the kind of watery precipitation that falls on Earth. On this alien world, the precipitation is in the form of sunscreen. Ironically, the sunscreen (titanium oxide) is not needed on this side of the planet because it never receives any sunlight. But bottling up some sunlight protection is a good idea if travelers plan on visiting the sizzling hot,...

Scientists detect comets outside our solar system

An artist’s conception of a view from within the Exocomet system KIC 3542116. Credit: Danielle Futselaar Team of professional and citizen scientists identifies tails of comets streaking past a distant star Jennifer Chu | MIT News Office Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets — comets outside our solar system — orbiting a faint star 800 light years from Earth. These cosmic balls of ice and dust, which were about the size of Halley’s Comet and traveled about 100,000 miles per hour before they ultimately vaporized, are some of the smallest objects yet found outside our own solar system. The discovery marks the first time that an object as small as a comet has been detected using transit photometry, a technique by which astronomers observe a star’s light for telltale dips in intensity. Such dips signal potential transits, or crossings of planets or other objects in front of a star, ...

Revealing Galactic Secrets

Countless galaxies vie for attention in this monster image of the Fornax Galaxy Cluster, some appearing only as pinpricks of light while others dominate the foreground. One of these is the lenticular galaxy NGC 1316. The turbulent past of this much-studied galaxy has left it with a delicate structure of loops, arcs and rings that astronomers have now imaged in greater detail than ever before with the VLT Survey Telescope. This astonishingly deep image also reveals a myriad of dim objects along with faint intracluster light.  Credit: ESO/A. Grado & L. Limatola Captured using the exceptional sky-surveying abilities of the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile, this deep view reveals the secrets of the luminous members of the Fornax Cluster, one of the richest and closest galaxy clusters to the Milky Way. This 2.3-gigapixel image is one of the largest images ever released by ESO. Perhaps the most fascinating member of the cluster is NGC 1316, ...