Skip to main content

Posts

Showing posts from June 19, 2016

Shadow Below

Image: Saturn. Credit: NASA/JPL-Caltech/Space Science Institute As Saturn's northern hemisphere summer approaches, the shadows of the rings creep ever southward across the planet. Here, the ring shadows appear to obscure almost the entire southern hemisphere, while the planet's north pole and its six-sided jet stream, known as "the hexagon," are fully illuminated by the sun. When NASA's Cassini spacecraft arrived at Saturn 12 years ago, the shadows of the rings lay far to the north on the planet. As the mission progressed and seasons turned on the slow-orbiting giant, equinox arrived and the shadows of the rings became a thin line at the equator. This view looks toward the sunlit side of the rings from about 16 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on March 19, 2016. The view was obtained at a distance of approximately 1.7 million miles (2.7 million kilometers) from Saturn and at a

The stars of the Large Magellanic Cloud

Image: Globular Cluster NGC 1854. Credit: ESA/Hubble & NASA This NASA/ESA Hubble Space Telescope image shows the globular cluster NGC 1854, a gathering of white and blue stars in the southern constellation of Dorado (The Dolphinfish). NGC 1854 is located about 135 000 light-years away, in the Large Magellanic Cloud (LMC), one of our closest cosmic neighbours and a satellite galaxy of the Milky Way. The LMC is a hotbed of vigorous star formation. Rich in interstellar gas and dust, the galaxy is home to approximately 60 globular clusters and 700 open clusters. These clusters are frequently the subject of astronomical research, as the Large Magellanic Cloud and its little sister, the Small Magellanic Cloud, are the only systems known to contain clusters at all stages of evolution. Hubble is often used to study these clusters as its extremely high-resolution cameras can resolve individual stars, even at the clusters’ crowded cores, revealing their mass, size and degree of ev

The Big-Bang Theory

This image represents the evolution of the Universe, starting with the Big Bang. The red arrow marks the flow of time. Credit: NASA Over the past century, rooted in the theory of general relativity, cosmology has developed a very successful physical model of the universe: the big-bang model. Its construction followed different stages to incorporate nuclear processes, the understanding of the matter present in the universe, a description of the early universe and of the large scale structure. This model has been confronted to a variety of observations that allow one to reconstruct its expansion history, its thermal history and the structuration of matter. Hence, what we refer to as the big-bang model today is radically different from what one may have had in mind a century ago. This construction changed our vision of the universe, both on observable scales and for the universe as a whole. It offers in particular physical models for the origins of the atomic nuclei, of matter and

A Spiral Snowflake

Image: The spiral galaxy NGC 6814. Credit: ESA/Hubble & NASA . Acknowledgement: Judy Schmidt (Geckzilla) Spiral galaxies together with irregular galaxies make up approximately 60% of the galaxies in the local Universe. However, despite their prevalence, each spiral galaxy is unique - like snowflakes, no two are alike. This is demonstrated by the striking face-on spiral galaxy NGC 6814, whose luminous nucleus and spectacular sweeping arms, rippled with an intricate pattern of dark dust, are captured in this NASA/ESA Hubble Space Telescope image. NGC 6814 has an extremely bright nucleus, a telltale sign that the galaxy is a Seyfert galaxy. Seyfert galaxies account for about 10% of all galaxies and are some of the most intensely studied objects in astronomy, as they are thought to be powered by the same phenomena that occur in quasars, although they are closer and less luminous than quasars. These galaxies have supermassive black holes at their centers which are surro

Boulevard of Broken Rings

Credit: ESO/Perrot This Picture illustrates the remarkable capabilities of SPHERE (the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument), a planet-hunting instrument mounted on ESO's Very Large Telescope (VLT) in Chile: It shows a series of broken rings of dust around a nearby star. These concentric rings are located in the inner region of the debris disc surrounding a young star named HD 141569A, which sits some 370 light-years away from us. In this image we see what is known as a transition disc, a short-lived stage between the protoplanetary phase, when planets have not yet formed, and a later time when planets have coalesced, leaving the disc populated only by any remaining - and predominantly dusty - debris. What we see here are structures formed of dust, revealed for the first time in near-infrared light by SPHERE - at a high enough resolution to capture remarkable detail! The area shown in this image has a diameter of just 200 times the Earth–Sun distan