Skip to main content

Posts

Showing posts from 2016

Importance of Supernovae in the Enrichment of Planetary Systems

Figure: Called the Veil Nebula, the debris is one of the best-known supernova remnants, deriving its name from its delicate, draped filamentary structures. This view is a mosaic of six Hubble pictures of a small area roughly two light-years across, covering only a tiny fraction of the nebula’s vast structure. Credit: NASA/ESA/Hubble Heritage Team The presence and abundance of short lived radioisotopes in chondritic meteorites implies that the Sun formed in the vicinity of one or more massive stars that exploded as supernovae (SNe).

Can There be Life on Planets in Orbit around a Red Dwarf?

Figure - This artist's impression shows two Earth-sized worlds passing in front of their parent red dwarf star, which is much smaller and cooler than our Sun. The star and its orbiting planets TRAPPIST-1b and TRAPPIST-1c reside 40 light-years away. The planets are between 20 and 100 times closer to their star than Earth is to the Sun. Researchers think that at least one of the planets, and possibly both, may be within the star's habitable zone, where moderate temperatures could allow for liquid water on the surface. Hubble looked for evidence of extended atmospheres around both planets and didn't find anything. Credit: NASA, ESA, and G. Bacon (STScI) A red dwarf is a small and relatively cool star on the main sequence, of either K or M spectral type. Red dwarfs range in mass from a low of 0.075 solar masses (M☉) to about 0.50 M☉ and have a surface temperature of less than 4,000 K. Red dwarfs are by far the most common type of star in the Milky Way, at least in th

The neutron-star low-mass X-ray binary GX 9+1

Figure - An artist's impression of an accreting Low Mass X-ray Binary. The donor star fills its Roche lobe and its material overflows the inner Lagrangian points and accretes on the relativistic star. Due to the large angular momentum of the infalling material an accretion disk is formed around the compact object. Credit: ESA, NASA, and Felix Mirabel (French Atomic Energy Commission and Institute for Astronomy and Space Physics/Conicet of Argentina) A low-mass X-ray binary (LMXB) contains a neutron star which is accreting material via Roche lobe overflow from a companion star. Due to the high angular momentum of the accretion flow an accretion disc is formed around the compact object. In a recent paper ( van den Berg & Homan 2016 ) the authors have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data and they have identified a new near-infrared (NIR) counterpar

Shadow Below

Image: Saturn. Credit: NASA/JPL-Caltech/Space Science Institute As Saturn's northern hemisphere summer approaches, the shadows of the rings creep ever southward across the planet. Here, the ring shadows appear to obscure almost the entire southern hemisphere, while the planet's north pole and its six-sided jet stream, known as "the hexagon," are fully illuminated by the sun. When NASA's Cassini spacecraft arrived at Saturn 12 years ago, the shadows of the rings lay far to the north on the planet. As the mission progressed and seasons turned on the slow-orbiting giant, equinox arrived and the shadows of the rings became a thin line at the equator. This view looks toward the sunlit side of the rings from about 16 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on March 19, 2016. The view was obtained at a distance of approximately 1.7 million miles (2.7 million kilometers) from Saturn and at a

The stars of the Large Magellanic Cloud

Image: Globular Cluster NGC 1854. Credit: ESA/Hubble & NASA This NASA/ESA Hubble Space Telescope image shows the globular cluster NGC 1854, a gathering of white and blue stars in the southern constellation of Dorado (The Dolphinfish). NGC 1854 is located about 135 000 light-years away, in the Large Magellanic Cloud (LMC), one of our closest cosmic neighbours and a satellite galaxy of the Milky Way. The LMC is a hotbed of vigorous star formation. Rich in interstellar gas and dust, the galaxy is home to approximately 60 globular clusters and 700 open clusters. These clusters are frequently the subject of astronomical research, as the Large Magellanic Cloud and its little sister, the Small Magellanic Cloud, are the only systems known to contain clusters at all stages of evolution. Hubble is often used to study these clusters as its extremely high-resolution cameras can resolve individual stars, even at the clusters’ crowded cores, revealing their mass, size and degree of ev

The Big-Bang Theory

This image represents the evolution of the Universe, starting with the Big Bang. The red arrow marks the flow of time. Credit: NASA Over the past century, rooted in the theory of general relativity, cosmology has developed a very successful physical model of the universe: the big-bang model. Its construction followed different stages to incorporate nuclear processes, the understanding of the matter present in the universe, a description of the early universe and of the large scale structure. This model has been confronted to a variety of observations that allow one to reconstruct its expansion history, its thermal history and the structuration of matter. Hence, what we refer to as the big-bang model today is radically different from what one may have had in mind a century ago. This construction changed our vision of the universe, both on observable scales and for the universe as a whole. It offers in particular physical models for the origins of the atomic nuclei, of matter and

A Spiral Snowflake

Image: The spiral galaxy NGC 6814. Credit: ESA/Hubble & NASA . Acknowledgement: Judy Schmidt (Geckzilla) Spiral galaxies together with irregular galaxies make up approximately 60% of the galaxies in the local Universe. However, despite their prevalence, each spiral galaxy is unique - like snowflakes, no two are alike. This is demonstrated by the striking face-on spiral galaxy NGC 6814, whose luminous nucleus and spectacular sweeping arms, rippled with an intricate pattern of dark dust, are captured in this NASA/ESA Hubble Space Telescope image. NGC 6814 has an extremely bright nucleus, a telltale sign that the galaxy is a Seyfert galaxy. Seyfert galaxies account for about 10% of all galaxies and are some of the most intensely studied objects in astronomy, as they are thought to be powered by the same phenomena that occur in quasars, although they are closer and less luminous than quasars. These galaxies have supermassive black holes at their centers which are surro

Boulevard of Broken Rings

Credit: ESO/Perrot This Picture illustrates the remarkable capabilities of SPHERE (the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument), a planet-hunting instrument mounted on ESO's Very Large Telescope (VLT) in Chile: It shows a series of broken rings of dust around a nearby star. These concentric rings are located in the inner region of the debris disc surrounding a young star named HD 141569A, which sits some 370 light-years away from us. In this image we see what is known as a transition disc, a short-lived stage between the protoplanetary phase, when planets have not yet formed, and a later time when planets have coalesced, leaving the disc populated only by any remaining - and predominantly dusty - debris. What we see here are structures formed of dust, revealed for the first time in near-infrared light by SPHERE - at a high enough resolution to capture remarkable detail! The area shown in this image has a diameter of just 200 times the Earth–Sun distan

Scattered stars in Sagittarius

This colourful and star-studded view of the Milky Way galaxy was captured when the NASA/ESA Hubble Space Telescope pointed its cameras towards the constellation of Sagittarius (The Archer) . Blue stars can be seen scattered across the frame, set against a distant backdrop of red-hued cosmic companions. This blue litter most likely formed at the same time from the same collapsing molecular cloud. The colour of a star can reveal many of its secrets. Shades of red indicate a star much cooler than the Sun, so either at the end of its life, or much less massive. These lower-mass stars are called red dwarfs and are thought to be the most common type of star within the Milky Way. Similarly, brilliant blue hues indicate hot, young, or massive stars, many times the mass of the Sun. A star's mass decides its fate; more massive stars burn brightly over a short lifespan, and die young after only tens of millions of years. Stars like the Sun typically have more sedentary lifestyles and live

Protoplanetary disks in the hostile environment of Carina

Image: Star-forming region in the Carina Nebula. Credit: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) In a recent paper (Mesa-Delgado et al. 2016) [1] the authors report the first direct imaging of protoplanetary disks in the star-forming region of Carina, the most distant, massive cluster in which disks have been imaged.

The influence of circumnuclear environment on the radio emission from TDE jets

Image: This computer-simulated image shows gas from a star that is ripped apart by tidal forces as it falls into a black hole. Credits: NASA, S. Gezari (The Johns Hopkins University), and J. Guillochon (University of California, Santa Cruz) When a star in a galactic nucleus is deflected too close to the central supermassive black hole (BH), it can be torn apart by tidal forces. During this tidal disruption event (TDE), roughly half of the stellar debris remains bound to the BH, while the other half is flung outwards and unbound from the system. The bound material, following a potentially complex process of debris circularization accretes onto the BH, creating a luminous flare lasting months to years.

Understanding neutron-star evolution from magnetar flares

Image: A rupture in the crust of a highly magnetized neutron star, shown here in an artist's rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star's surface twists and vibrates, providing new insights into what lies beneath. Credits: NASA's Goddard Space Flight Center/S. Wiessinger Some of the most intriguing neutron stars are the magnetars: highly magnetised objects whose surface fields are inferred to be in excess of 10 14 G in some cases, and whose interior fields may reach 10 16 G. In contrast with many older, more predictable neutron stars, magnetars are volatile, alternating between quiescent states and highly energetic bursts and flares. Their most spectacular events are the giant flares, releasing over ~ 10 45 erg of energy in a very brief flash and decaying X-ray tail. The giant flares of magnetars are believed to be powered by colossal magnetic energy reservoirs. In a recent paper (Lan

Sub-photospheric shocks in relativistic explosions

Image: In the most common type of gamma-ray burst, illustrated here, a dying massive star forms a black hole (left), which drives a particle jet into space. Light across the spectrum arises from hot gas near the black hole, collisions within the jet, and from the jet's interaction with its surroundings. Credit: NASA's Goddard Space Flight Center Astrophysical explosions and jets generate shock waves, which produce radiation. Their radiative properties are determined by the dissipation mechanism that sustains the velocity jump in the shock and by its ability to generate nonthermal particles. A recent paper (Beloborodov 2016) examines the mechanism of internal shocks in gamma-ray bursts (GRBs) that occur before the GRB jets become transparent to radiation. The approach and some of the results may also be of interest for other explosions, e.g. in novae or supernovae. Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation f

Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay

Image: A Schematic Outline of the Cosmic History - Credit: NASA/WMAP Science Team The epoch of reionisation and the emergence of the universe from the cosmic dark ages is a subject of intense study in modern cosmology.

Binary neutron star mergers: a jet engine for short gamma-ray burst

Picture: These images show the merger of two neutron stars simulated using a new supercomputer model. Redder colors indicate lower densities. Green and white ribbons and lines represent magnetic fields. The orbiting neutron stars rapidly lose energy by emitting gravitational waves and merge after about three orbits, or in less than 8 milliseconds. The merger amplifies and scrambles the merged magnetic field. A black hole forms and the magnetic field becomes more organized, eventually producing structures capable of supporting the jets that power short gamma-ray bursts. Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla The LIGO and Virgo Collaborations recently reported the first direct detection of a gravitational-wave (GW) signal and demonstrated that it was produced by the inspiral and coalescence of a binary black hole (BHBH) system.

The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

Image: This annotated artist’s impression shows the Milky Way galaxy. The blue halo of material surrounding the galaxy indicates the expected distribution of the mysterious dark matter. Credit: ESO/L. Calçada In a recent paper (Huang et al. 2016) the rotation curve (RC) of the Milky Way out to ~100kpc has been constructed using ~16,000 primary red clump giants (PRCGs) in the outer disk selected from the LSS-GAC and the SDSS-III/APOGEE survey, combined with ~5700 halo K giants (HKGs) selected from the SDSS/SEGUE survey.

The High-Energy Tail of the Galactic Center Gamma-Ray Excess

Image: At left is a map of gamma rays with energies between 1 and 3.16 GeV detected in the galactic center by Fermi's LAT; red indicates the greatest number. Prominent pulsars are labeled. Removing all known gamma-ray sources (right) reveals excess emission that may arise from dark matter annihilations. Credits: T. Linden, Univ. of Chicago Observations by the Fermi-LAT have uncovered a bright, spherically symmetric excess surrounding the center of the Milky Way galaxy. The spectrum of the gamma-ray excess peaks sharply at an energy ~2 GeV, exhibiting a hard spectrum at lower energies, and falls off quickly above an energy ~5 GeV. The spectrum of the excess above ~10 GeV is potentially an important discriminator between different physical models for its origin.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

Dynamical constraints on the origin of hot and warm Jupiters with close friends

Image: Artist's concept of a "hot Jupiter" - Credit: NASA/JPL-Caltech Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. In a recent paper (Antonini et al 2016) the authors consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. They show that the majority of the observed Jupiter pairs (twenty out of twenty-four) will be dynamically unstable if the inner planet was placed at >~1AU distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semi-major axes >~1AU due to secular dynamical processes (e.g., secular chaos, Lidov-Kozai oscillations) coupled with tidal dissipation. In fact, the results of N-body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions wi

A Population of Short-Period Variable Quasars as Supermassive Black Hole Binary Candidates

Image: Quasar Pair Captured in Galaxy Collision. Credits: X-ray: NASA/CXC/SAO/P. Green et al. Optical: Carnegie Obs./Magellan/W. Baade Telescope/J.S. Mulchaey et al. Strong observational evidence suggests that every massive galaxy hosts a supermassive black hole in its nucleus. The central black hole (BH) is an important component of the galaxy, since the BH mass is correlated with the global properties of the host galaxy, e.g., dispersion velocity, bulge luminosity, or bulge mass.

Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays?

Fujita et al. (2016) explore the possibility that Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, significantly contributes to the observed TeV-PeV cosmic rays (CRs) as a Galactic PeV particle accelerator ("Pevatron").

Dark matter versus modified gravity

The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made.

Critical Test Of Gamma Ray Burst Theories

Image Credit: NASA/Dana Berry Long and precise follow-up measurements of the X-ray afterglow (AG) of very intense gamma ray bursts (GRBs) provide a critical test of GRB afterglow theories.

Warm Jupiters from secular planet-planet interactions

Image: Illustration of a warm Jupiter planet. Credit: X-ray: NASA/CXC/SAO/I.Pillitteri et al; Optical: DSS Most warm Jupiters have pericenter distances that are too large for significant orbital migration by tidal friction.

Densities of the Kuiper Belt's Dwarf Planets

Image: Artist's view of Kuiper belt object. Credit: NASA and G. Bacon (STSci) Kuiper Belt objects with absolute magnitude less than 3 (radius >500 km), the dwarf planets, have a range of different ice/rock ratios, and are more rock-rich than their smaller counterparts. Many of these objects have moons, which suggests that collisions may have played a role in modifying their compositions.

New H.E.S.S. diffuse emission from the Galactic center

Astrophysics News (March 22)

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova explosions.   Read>>

NO CORRELATION BETWEEN FERMI GBM SIGNAL AND GW150914

Image: Merging black holes. Credit: NASA Recently it has been suggested that electromagnetic signals detected by Fermi GBM could be associated with the merger of the two black holes detected by LIGO ( GW150914 ).

TELESCOPES COMBINE TO PUSH FRONTIER ON GALAXY CLUTERS

Credit: NASA, ESA, CXC, NRAO/AUI/NSF, STScI, R. van Weeren (Harvard-Smithsonian Center for Astrophysics), and G. Ogrean (Stanford University) Hubble News Located about 4.3 billion light-years from Earth, MACS J0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster.

SUPERNOVAE FROM WD-WD DIRECT COLLISIONS

Image: Supernova remnant N 63A. Credit: NASA/ESA/HEIC and The Hubble Heritage Team (STScI/AURA) Models for supernovae (SNe) related to thermonuclear explosions of white dwarfs (WDs) have been extensively studied over the last few decades, mostly focusing on single degenerate (accretion of material of a WD) and double degenerate (WD-WD merger) scenarios.

RAPIDLY ROTATING PULSARS AS POSSIBLE SOURCES OF FAST RADIO BURSTS

Image: Artist's impression of a magnetar. Credit: ESO/L. Calçada In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ~ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods.

A BINARY ORIGIN FOR A CENTRAL COMPACT OBJECT (CCO)?

Figure: False-Colour X-ray and infrared emission image from the core of the infrared shell. The RGB colours correspond to Chandra X-ray 0.2-10 keV (blue), IRAC infrared 8 μm (green), and HPACS 70 μm (red) data. The intensity scale is logarithmic for all channels. Overlaid are equal brightness levels from the MIPS 24 μm band. Note that around the CCO the infrared emission is suppressed in the 70 μm band and enhanced in the 24 μm band suggesting higher dust temperature. Credit: Doroshenko et al 2016 Central compact objects (CCOs) are thought to be young isolated neutron stars that were born during the preceding core-collapse supernova explosion.

ROTATION CURVES OF GALAXIES AS A TEST OF MOND

Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. According to Newtonian gravity, the rotational velocity falls with distance from the center of a galaxy, while the observed data usually show an asymptotically flat rotation curve out to the furthest observationally accessible data points.

A METHOD TO TEST THE EXISTENCE OF REGULAR BLACK HOLES

Illustration of a black hole. Image Credit & Copyright: Alain Riazuelo The existence of the singularity is an intrinsic problem of the General Relativity (GR). At the fundamentally level, the resolution of the problem of the singularity lies with the expectation that under situations where quantum effects become strong, the behavior of gravity could possibly greatly deviate from that predicted by the classical theory of GR. Regular black hole solution are proposed with the same spacetime geometry outside the horizon as the traditional black hole, but bears no singularity inside. Whether or not black hole singularities should exist, they would be covered by the black hole horizon. The black hole horizon serves as an information curtain hindering outside observers from directly observing the interior structure of the black hole, and determining that whether or not the black hole singularity does really exist. A method is needed to check the correctness of the new constructions

A DARK MATTER HALO AS SOURCE OF GAMMA-RAYS?

Image: Illustration of a dark matter halo around the Milky Way. Credit: ESO/L. Calçada. The gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. In a recent paper (Bertoni et al. 2016) the authors use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. They argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. The authors

A NEW EVOLUTIVE SCENARIO FOR THE JUPITER'S CORE?

Image: This artist's conception shows a Jupiter-sized planet forming from a disk of dust and gas surrounding a young, massive star. - NASA Astronomers have discovered nearly 500 planetary systems each with multiple planets, and typically these systems include a few planets with masses several times greater than Earth's (super-Earths), orbiting closer to their star than Mercury is to the Sun, and Jupiter-like gas giants are also often found close to their star. [2]

BOUNCING BLACK HOLES

Image: Illustration of a dusty supermassive black hole. Credit: ESA/NASA, the AVO project and Paolo Padovani Black holes could be bouncing stars as a consequence of quantum gravity: when the density of matter becomes high enough, quantum gravity effects generate sufficient pressure to compensate the matter's weight, the collapse ends, and matter bounces out. In a black hole, matter's collapse could stop before the central singularity is formed.

ARE THE TWO BLACK HOLES OBSERVED BY LIGO PRODUCED FROM THE COLLAPSE OF A SINGLE STAR?

Image: Simulation of two colliding black holes. Animation created by SXS, the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org) - Caltech LIGO If the GW signal observed by LIGO is due to the merger of two isolated black holes (BHs) in vacuum, no electromagnetic counterparts are expected. However, Fermi observed a signal 0.4 s after LIGO in a region of space compatible with the GW source.

TESTING THE SPEED OF GRAVITATIONAL WAVES OVER COSMOLOGICAL DISTANCES

Image: Merging black holes ripple space and time in this artist's concept. Credit: Swinburne Astronomy Productions On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) observed a transient gravitational-wave signal from a black hole-black hole binary (BHBH) inspiral.

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

REMAIN SOME POSSIBILITIES FOR ALTERNATIVE THEORIES OF GRAVITY?

Image: Numerical simulations of the gravitational waves emitted by the inspiral and merger of two black holes. The colored contours around each black hole represent the amplitude of the gravitational radiation; the blue lines represent the orbits of the black holes and the green arrows represent their spins. Credit: C. Henze/NASA Ames Research Center The observation of gravitational-wave signal by LIGO and VIRGO, corresponding to the inspiral and merger of two black holes, are consistent with the Einstein theory of gravity with high accuracy limited mainly by the statistical error.

ABOUT THE FORMATION OF THE COLD CLASSICAL KUIPER BELT

Image: The Kuiper Belt. Credit: NASA . The Kuiper belt is a circumstellar disc in the Solar System beyond the planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt (the circumstellar disc located roughly between the orbits of the planets Mars and Jupiter), but it is far larger-20 times as wide and 20 to 200 times as massive.

TAILS OF IONISED GAS IN NGC 4569

Image: The colour image of the galaxy NGC 4569 in the Virgo cluster, obtained with MegaCam at the CFHT. The red filaments at the right of the galaxy show the ionised gas removed by ram pressure. This is about 95% of the gas reservoir of the galaxy needed to feed the formation of new stars  Credit: CFHT/Coelum Messier 90 (also known as M90 and NGC 4569) is a member of the Virgo cluster and one of its largest and brightest spiral galaxies, about 60 million light-years away.