Skip to main content

RELATION BETWEEN TIDAL DISRUPTION EVENTS AND HOST GALAXIES

Image: Artistic illustration of a black hole divouring a star. Credit: NASA/Goddard Space Flight Center/CI Lab
 
A tidal disruption event occurs when a star gets close enough to a supermassive black hole's event horizon and is pulled apart by the black hole's tidal forces.
In a recent paper (French, Arcavi & Zabludoff, 2016 ApJL) the authors show that the tidal disruption events occur more frequently in host galaxies with strong Balmer line absorption. This feature indicates low levels of current star formation.





The Balmer lines in atomic physics, is the designation of one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is characterized by the electron transitioning from n > 2 to n = 2, where n refers to the radial quantum number or principal quantum number of the electron.

In the simplified Rutherford Bohr model of the hydrogen atom, the Balmer lines result from an electron jump between the second energy level closest to the nucleus, and those levels more distant. Shown here is a photon emission. (https://en.wikipedia.org/wiki/Balmer_series)





The connection tidal-disruption/host-galaxy may be due to the fact that these host galaxies have had a recent galaxy-galaxy merger. Such event increases the possibility of formation of black-hole binaries, perturbed stellar orbits and a spatially-concentrated population of A giant stars.


Figure: Tidal disruption of a star. Credit: NASA/Goddard Space Flight Center/Swift


▪ French, Arcavi & Zabludoff (ApJL) - Tidal drisuption events prefer unusual host galaxies. (arXiv)


Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.

MILLISECOND PULSAR ORIGIN OF THE GALACTIC CENTER GEV EXCESS

Image: The Milky Way. Credit: Serge Brunier Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the inner Galaxy, at energies around a few GeV. This excess attracted great attention, because it has properties typical for a dark matter annihilation signal.