Skip to main content

SUPER-EDDINGTON ACCRETION IN ACTIVE GALACTIC NUCLEI

Supermassive black holes at the cores of galaxies blast radiation and ultra-fast winds outward, as illustrated in this artist's conception. Credit: NASA/JPL-Caltech


Broad emission lines are a hallmark feature of type 1 active galactic nuclei (AGNs) and quasars. Many basic properties of the broad-line region (BLR), such as its basic geometry, dynamics, and physical connection to the accretion disk around the supermassive black hole (BH), remain illdefined. AGN spectra exhibit both tremendous diversity as well as discernable patterns of systematic regularity.



In a recent paper (Du, Wang et al. 2016) published on ApJL, the authors study correlations among three dimensionless AGN parameters: accretion rate (or Eddington ratio), shape of the broad Hβ line, and flux ratio of optical Fe II to Hβ. A strong correlation among them is found, denoted as the fundamental plane of AGN BLRs. The BLR fundamental plane allows to conveniently explore the accretion status of the AGN central engine using single-epoch spectra, opening up many interesting avenues for exploring AGNs, including their cosmological evolution. The authors apply the plane to a sample of z < 0.8 quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.

(The Eddington limit, is the maximum luminosity a body - such as a star - can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington limit, it will initiate a very intense radiation-driven stellar wind from its outer layers).

Du, Wang et al., 2016 ApJL - The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei (arXiv)

Comments

Popular posts from this blog

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. Such massive planets were not thought to exist ar...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).