Skip to main content

SUPER-EDDINGTON ACCRETION IN ACTIVE GALACTIC NUCLEI

Supermassive black holes at the cores of galaxies blast radiation and ultra-fast winds outward, as illustrated in this artist's conception. Credit: NASA/JPL-Caltech


Broad emission lines are a hallmark feature of type 1 active galactic nuclei (AGNs) and quasars. Many basic properties of the broad-line region (BLR), such as its basic geometry, dynamics, and physical connection to the accretion disk around the supermassive black hole (BH), remain illdefined. AGN spectra exhibit both tremendous diversity as well as discernable patterns of systematic regularity.



In a recent paper (Du, Wang et al. 2016) published on ApJL, the authors study correlations among three dimensionless AGN parameters: accretion rate (or Eddington ratio), shape of the broad Hβ line, and flux ratio of optical Fe II to Hβ. A strong correlation among them is found, denoted as the fundamental plane of AGN BLRs. The BLR fundamental plane allows to conveniently explore the accretion status of the AGN central engine using single-epoch spectra, opening up many interesting avenues for exploring AGNs, including their cosmological evolution. The authors apply the plane to a sample of z < 0.8 quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.

(The Eddington limit, is the maximum luminosity a body - such as a star - can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington limit, it will initiate a very intense radiation-driven stellar wind from its outer layers).

Du, Wang et al., 2016 ApJL - The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

RADIATIVE CLEARING OF PROTOPLANETARY DISCS

Image: protoplanetary disc surrounding the young star HL Tauri, a very young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO) T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.