Skip to main content

SUPER-EDDINGTON ACCRETION IN ACTIVE GALACTIC NUCLEI

Supermassive black holes at the cores of galaxies blast radiation and ultra-fast winds outward, as illustrated in this artist's conception. Credit: NASA/JPL-Caltech


Broad emission lines are a hallmark feature of type 1 active galactic nuclei (AGNs) and quasars. Many basic properties of the broad-line region (BLR), such as its basic geometry, dynamics, and physical connection to the accretion disk around the supermassive black hole (BH), remain illdefined. AGN spectra exhibit both tremendous diversity as well as discernable patterns of systematic regularity.



In a recent paper (Du, Wang et al. 2016) published on ApJL, the authors study correlations among three dimensionless AGN parameters: accretion rate (or Eddington ratio), shape of the broad Hβ line, and flux ratio of optical Fe II to Hβ. A strong correlation among them is found, denoted as the fundamental plane of AGN BLRs. The BLR fundamental plane allows to conveniently explore the accretion status of the AGN central engine using single-epoch spectra, opening up many interesting avenues for exploring AGNs, including their cosmological evolution. The authors apply the plane to a sample of z < 0.8 quasars to demonstrate the prevalence of super-Eddington accreting AGNs are quite common at low redshifts.

(The Eddington limit, is the maximum luminosity a body - such as a star - can achieve when there is balance between the force of radiation acting outward and the gravitational force acting inward. The state of balance is called hydrostatic equilibrium. When a star exceeds the Eddington limit, it will initiate a very intense radiation-driven stellar wind from its outer layers).

Du, Wang et al., 2016 ApJL - The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei (arXiv)

Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...