Skip to main content

STABLE CARBON PRODUCTION ON ACCRETING NEUTRON STARS AT THE ORIGIN OF SUPERBURSTS

Image Credit: David A. Hardy & PPARC

Accreting neutron stars exhibit bursts due to nuclear burning of hydrogen/helium and rarely even carbon. The carbon flashes generate the superbusts. The carbon is produced during the hydrogen/helium flashes. However the amount of carbon produced in hydrogen/helium flashes is insufficient to power the superbursts.


To produce the amount of carbon necessary to trigger the superbursts is required a "stable burning" of hydrogen/helium in addition to high accretion rates. But the accretion rates observed in superbursts (10^[- 9] solar masses/year) are too low to produce the amount of carbon necessary for superbursts.
In a recent paper (Keek, Heger 2016) the authors find that the hot CNO burning of hydrogen heats the neutron star envelope accelerating the burning of helium (and thus the production of carbon) before the conditions of a helium flash are reached. This acceleration of the production rate of carbon makes it possible superbursts even with growth rates lower, consistent as order of magnitude with those observed (10 ^ [- 9] solar masses / year).


Read more>>
http://arxiv.org/abs/1508.06630
http://mnrasl.oxfordjournals.org/content/456/1/L11.abstract

Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...