Image Credit: David A. Hardy & PPARC |
Accreting neutron stars exhibit bursts due to nuclear burning of hydrogen/helium and rarely even carbon. The carbon flashes generate the superbusts. The carbon is produced during the hydrogen/helium flashes. However the amount of carbon produced in hydrogen/helium flashes is insufficient to power the superbursts.
To produce the amount of carbon necessary to trigger the superbursts is required a "stable burning" of hydrogen/helium in addition to high accretion rates. But the accretion rates observed in superbursts (10^[- 9] solar masses/year) are too low to produce the amount of carbon necessary for superbursts.
In a recent paper (Keek, Heger 2016) the authors find that the hot CNO burning of hydrogen heats the neutron star envelope accelerating the burning of helium (and thus the production of carbon) before the conditions of a helium flash are reached. This acceleration of the production rate of carbon makes it possible superbursts even with growth rates lower, consistent as order of magnitude with those observed (10 ^ [- 9] solar masses / year).
Read more>>
http://arxiv.org/abs/1508.06630
http://mnrasl.oxfordjournals.org/content/456/1/L11.abstract
Comments
Post a Comment