Skip to main content

STABLE CARBON PRODUCTION ON ACCRETING NEUTRON STARS AT THE ORIGIN OF SUPERBURSTS

Image Credit: David A. Hardy & PPARC

Accreting neutron stars exhibit bursts due to nuclear burning of hydrogen/helium and rarely even carbon. The carbon flashes generate the superbusts. The carbon is produced during the hydrogen/helium flashes. However the amount of carbon produced in hydrogen/helium flashes is insufficient to power the superbursts.


To produce the amount of carbon necessary to trigger the superbursts is required a "stable burning" of hydrogen/helium in addition to high accretion rates. But the accretion rates observed in superbursts (10^[- 9] solar masses/year) are too low to produce the amount of carbon necessary for superbursts.
In a recent paper (Keek, Heger 2016) the authors find that the hot CNO burning of hydrogen heats the neutron star envelope accelerating the burning of helium (and thus the production of carbon) before the conditions of a helium flash are reached. This acceleration of the production rate of carbon makes it possible superbursts even with growth rates lower, consistent as order of magnitude with those observed (10 ^ [- 9] solar masses / year).


Read more>>
http://arxiv.org/abs/1508.06630
http://mnrasl.oxfordjournals.org/content/456/1/L11.abstract

Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...