Skip to main content

New H.E.S.S. diffuse emission from the Galactic center





Lacroix et al. (2016) show that the newly detected H.E.S.S. (High Energy Stereoscopic System) gamma-ray diffuse emission from the Galactic center below 0.45 deg can be accounted for by inverse Compton emission from millisecond pulsars and heavy (~ 100 TeV) dark matter annihilating to electrons or muons with a thermal or sub-thermal cross-section, provided that the dark matter density profile features a supermassive black hole-induced spike on sub-pc scales.

Image: Center of our Galaxy. Credit: NASA, ESA, SSC, CXC, and STScI

They discuss the impact of the interstellar radiation field, magnetic field and diffusion set-up on the spectral and spatial morphology of the resulting emission. For well-motivated parameters, they show that the DM-induced emission reproduces the spatial morphology of the H.E.S.S. signal above ~ 10 TeV, while they obtain a more extended component from pulsars at lower energies, which could be used as a prediction for future H.E.S.S. observations.

  • Lacroix et al. 2016 (preprint) - New H.E.S.S. diffuse emission from the Galactic center: a combination of heavy dark matter and millisecond pulsars? (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

RADIATIVE CLEARING OF PROTOPLANETARY DISCS

Image: protoplanetary disc surrounding the young star HL Tauri, a very young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO) T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).