Skip to main content

New H.E.S.S. diffuse emission from the Galactic center





Lacroix et al. (2016) show that the newly detected H.E.S.S. (High Energy Stereoscopic System) gamma-ray diffuse emission from the Galactic center below 0.45 deg can be accounted for by inverse Compton emission from millisecond pulsars and heavy (~ 100 TeV) dark matter annihilating to electrons or muons with a thermal or sub-thermal cross-section, provided that the dark matter density profile features a supermassive black hole-induced spike on sub-pc scales.

Image: Center of our Galaxy. Credit: NASA, ESA, SSC, CXC, and STScI

They discuss the impact of the interstellar radiation field, magnetic field and diffusion set-up on the spectral and spatial morphology of the resulting emission. For well-motivated parameters, they show that the DM-induced emission reproduces the spatial morphology of the H.E.S.S. signal above ~ 10 TeV, while they obtain a more extended component from pulsars at lower energies, which could be used as a prediction for future H.E.S.S. observations.

  • Lacroix et al. 2016 (preprint) - New H.E.S.S. diffuse emission from the Galactic center: a combination of heavy dark matter and millisecond pulsars? (arXiv)

Comments

Popular posts from this blog

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONTAMINATION BY SUPERNOVAE IN GLOBULAR CLUSTERS

Credit: ALMA (ESO/NAOJ/NRAO)/Alexandra Angelich (NRAO/AUI/NSF) Only a small amount of the supernovae products remains trapped within globular clusters and this "catch" only occurs in the most massive cases (mass cluster ≥ 10^6 solar masses).