Skip to main content

Hubble Spots Expanding Light Echo around Supernova

Light Echo around SN 2014J in M82. Credits NASA, ESA, and Y. Yang (Texas A&M University and Weizmann Institute of Science, Israel). Acknowledgment: M. Mountain (AURA) and The Hubble Heritage Team (STScI/AURA)

Light from a supernova explosion in the nearby starburst galaxy M82 is reverberating off a huge dust cloud in interstellar space.

The supernova, called SN 2014J, occurred at the upper right of M82, and is marked by an “X.” The supernova was discovered on Jan. 21, 2014. 

The inset images at top reveal an expanding shell of light from the stellar explosion sweeping through interstellar space, called a “light echo.” The images were taken 10 months to nearly two years after the violent event (Nov. 6, 2014 to Oct. 12, 2016). The light is bouncing off a giant dust cloud that extends 300 to 1,600 light-years from the supernova and is being reflected toward Earth.

SN 2014J is classified as a Type Ia supernova and is the closest such blast in at least four decades. A Type Ia supernova occurs in a binary star system consisting of a burned-out white dwarf and a companion star. The white dwarf explodes after the companion dumps too much material onto it.

The image of M82 reveals a bright blue disk, webs of shredded clouds, and fiery-looking plumes of glowing hydrogen blasting out of its central regions. 

Close encounters with its larger neighbor, the spiral galaxy M81, is compressing gas in M82 and stoking the birth of multiple star clusters. Some of these stars live for only a short time and die in cataclysmic supernova blasts, as shown by SN 2014J.


A light echo occurs because light from the stellar blast travels different distances to arrive at Earth. Some light comes to Earth directly from the supernova blast. Other light is delayed because it travels indirectly. In this case, the light is bouncing off a huge dust cloud that extends 300 to 1,600 light-years around the supernova and is being reflected toward Earth. Credits: NASA, ESA, and Y. Yang (Texas A&M / Weizmann Institute of Science)


Located 11.4 million light-years away, M82 appears high in the northern spring sky in the direction of the constellation Ursa Major, the Great Bear. It is also called the “Cigar Galaxy” because of the elliptical shape produced by the oblique tilt of its starry disk relative to our line of sight.

The M82 image was taken in 2006 by the Hubble Space Telescope's Advanced Camera for Surveys. The inset images of the light echo also were taken by the Advanced Camera for Surveys.



Credits

NASAESA, and Y. Yang (Texas A&M University and Weizmann Institute of Science, Israel). Acknowledgment: M. Mountain (AURA) and The Hubble Heritage Team (STScI/AURA)


Resources

Light Echo around SN 2014J in M82

Hubble Movie Shows Movement of Light Echo Around Exploded Star


Next Post


Forest of Molecular Signals in Star Forming Galaxy





Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...