Skip to main content

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss


A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS).

The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars.

The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets.

Such massive planets were not thought to exist around such small stars. The challenge now is to find out how common these types of planets are in the Galaxy.

M-dwarf stars as planetary hosts are of high interest. Two important recent discoveries in the field of exoplanets relate to planets orbiting M-dwarfs: Proxima Centauri and Trappist-1.

The  low  intrinsic  luminosity  of  M-dwarfs also means that the habitable zone is very close to the host star and therefore it is much easier to detect potential habitable  planets  around  these  stars, compared  to  their  more massive counterparts. Finally, M-dwarfs are the most populous  stars  in  the  Galaxy and hence understanding planet formation and planet frequency around these low mass stars greatly enhances our knowledge of the full population of planets in the Galaxy.

The  discovery  of  NGTS-1b  demonstrates  the  capability  of NGTS  to  probe  early  M-dwarfs  for  transiting  planets. In the full course of the survey, enough early M-dwarfs will be monitored to allow us to provide statistics for  these  host  stars  such  as  the  frequency  of  hot  Jupiters around early M-dwarfs.

Resources


NGTS-1b: A hot Jupiter transiting an M-dwarf - (arXiv)

‘Monster’ Planet Discovery Challenges Formation Theory

Next Post



Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ABOUT THE FORMATION OF THE COLD CLASSICAL KUIPER BELT

Image: The Kuiper Belt. Credit: NASA . The Kuiper belt is a circumstellar disc in the Solar System beyond the planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt (the circumstellar disc located roughly between the orbits of the planets Mars and Jupiter), but it is far larger-20 times as wide and 20 to 200 times as massive.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.