Skip to main content

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss


A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS).

The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars.

The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets.

Such massive planets were not thought to exist around such small stars. The challenge now is to find out how common these types of planets are in the Galaxy.

M-dwarf stars as planetary hosts are of high interest. Two important recent discoveries in the field of exoplanets relate to planets orbiting M-dwarfs: Proxima Centauri and Trappist-1.

The  low  intrinsic  luminosity  of  M-dwarfs also means that the habitable zone is very close to the host star and therefore it is much easier to detect potential habitable  planets  around  these  stars, compared  to  their  more massive counterparts. Finally, M-dwarfs are the most populous  stars  in  the  Galaxy and hence understanding planet formation and planet frequency around these low mass stars greatly enhances our knowledge of the full population of planets in the Galaxy.

The  discovery  of  NGTS-1b  demonstrates  the  capability  of NGTS  to  probe  early  M-dwarfs  for  transiting  planets. In the full course of the survey, enough early M-dwarfs will be monitored to allow us to provide statistics for  these  host  stars  such  as  the  frequency  of  hot  Jupiters around early M-dwarfs.

Resources


NGTS-1b: A hot Jupiter transiting an M-dwarf - (arXiv)

‘Monster’ Planet Discovery Challenges Formation Theory

Next Post



Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...