Skip to main content

QUASARS AND THE COSMIC REIONIZATION

Credit: NASA/ESA


Recently it has been suggested that quasars can be primarily responsible for the reionization of the universe.


A bit of history for those who do not know what is the reionization - According to the "standard theory", the universe in the early stages after the Big Bang is hot and dense and the temperature is too high for the formation of atoms (hydrogen is formed by a proton and an electron), and then protons and electrons move freely in a sea of photons.
300,000 years after the Big Bang the universe cools and protons capture electrons generating the hydrogen atoms (this stage is called recombination and it is remembered as the dark age - the neutral hydrogen does not emit radiation and the universe is completely dark).
Later stars and galaxies are generated and the light emitted from these sources ionizes the hydrogen again (the electron is separated again from the proton - ionized hydrogen). This phase, which reaches up to the present day, is that of the cosmic reionization. All these stages are studied by analyzing the cosmic microwave background.
Such analysis show that much of the reionization could have occurred at redshift z=6 (at higher redshift correspond larger distances in space and time). A recent study analyzed the number of quasars at z=6 and suggests that their population may not be enough to explain the entire cosmic reionization occurred at that time. Consequently other sources should be involved in the reionization process.
These works are important to better understand how the universe evolved from the Big Bang to the present day.

► Read more>>
http://jwst.nasa.gov/firstlight.html

► Journal reference:
http://arxiv.org/abs/1511.01585
http://iopscience.iop.org/article/10.1088/2041-8205/813/2/L35;jsessionid=9CF824AF5CCB5CA65AE592274C573018.c5.iopscience.cld.iop.org

► Image credit:
NASA/ESA

Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...