Skip to main content

ORBITAL PERIODS OF THE PLANETS



For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).


To calculate the orbital period of the planets it is sufficient to consider the Newton's laws. If a planet with mass Mp moves in circular motion around the Sun (Msun = 1.98855 × 1030 kg), then the net centripetal force acting upon this orbiting planet is given by

where ω=(2π/T) is the angular velocity of the planet, and r is the distance from the Sun.
This centripetal force is the result of the gravitational force that attracts the planet towards the Sun


where G=6.67408 × 10-11 m3 kg-1 s-2 is the universal gravitational constant.

Since Fgr = Fcen, thus
 

Note that the orbital period does not depend on the mass of the planet but only on its distance from the Sun.

Example - The distance Earth/Sun is rearth = 1.4960×1011 m, thus

The distance Mars/Sun is rmars = 2.2794×1011 m, thus



A simple way to remember (approximately) the orbital periods of the planets of the solar system.



Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...