Skip to main content

Protoplanetary disks in the hostile environment of Carina


Image: Star-forming region in the Carina Nebula. Credit: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA)

In a recent paper (Mesa-Delgado et al. 2016)[1] the authors report the first direct imaging of protoplanetary disks in the star-forming region of Carina, the most distant, massive cluster in which disks have been imaged.


A protoplanetary disk is a rotating circumstellar disk of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gasses or other material may be falling from the inner edge of the disk onto the surface of the star. But this process should not be confused with the accretion process thought to build up the planets themselves.[2]

Image: This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star’s magnetic field lines and is deposited onto the star’s surface. When material hits the star, it lights up brightly. Credits: NASA/JPL-Caltech

Using the Atacama Large Millimeter/sub-millimeter Array (ALMA), disks are observed around two young stellar objects (YSOs) that are embedded inside evaporating gaseous globules and exhibit jet activity. The disks have an average size of 120 AU and total masses of 30 and 50 MJupiter. Given the measured masses, the minimum timescale required for planet formation (~1-2 Myr) and the average age of the Carina population (~1-4 Myr), it is plausible that young planets are present or their formation is currently ongoing in these disks.

Image: This picture of the ALMA antennas on the Chajnantor Plateau, 5000 m above sea level, was taken a few days before the start of ALMA Early Science. Nineteen antennas are on the plateau.  Credits: ALMA (ESO/NAOJ/NRAO)/W. Garnier (ALMA)

The non-detection of millimeter emission above the 4 sigma threshold (~7 MJupiter) in the core of the massive cluster Trumpler 14, an area containing previously identified proplyd candidates, suggest evidence for rapid photo-evaporative disk destruction in the cluster's harsh radiation field.

Protoplanetary disks can be dispersed by stellar wind and heating due to incident electromagnetic radiation. The radiation interacts with matter and thus accelerates it outwards. This effect is only noticeable when there is sufficient radiation strength, such as coming from nearby O and B type stars or when the central protostar commences nuclear fusion.

The disk is composed of gas and dust. The gas, consisting mostly of light elements such as hydrogen and helium, is mainly affected by the effect, causing the ratio between dust and gas to increase.

Radiation from the central star excites particles in the accretion disk. The irradiation of the disk gives rise to a stability length scale known as the gravitational radius (rg). Outside of the gravitational radius, particles can become sufficiently excited to escape the gravity of the disk, and evaporate.[3]

This mechanism would prevent the formation of giant gas planets in disks located in the cores of Carina's dense sub-clusters, whereas the majority of YSO disks in the wider Carina region remain unaffected by external photo-evaporation.

  1. Mesa-Delgado et. al 2016 (accepted in ApJL) - Protoplanetary disks in the hostile environment of Carina (arXiv)
  2. Protoplanetary disk (Wikipedia)
  3. Photoevaporation (Wikipedia)


Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...