Skip to main content

Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay

Image: A Schematic Outline of the Cosmic History - Credit: NASA/WMAP Science Team


The epoch of reionisation and the emergence of the universe from the cosmic dark ages is a subject of intense study in modern cosmology.


As baryonic matter began to collapse around initial fluctuations in the dark matter (DM) density seeded by inflation, the earliest galaxies in our universe began to form. These structures, perhaps accompanied by other sources, eventually began to emit ionising radiation, creating local patches of fully ionised hydrogen gas around them. These patches ultimately grew to encompass the entire universe, leading to the fully ionised intergalactic medium (IGM) that we observe today.

While the process of reionisation is broadly understood, the exact details of how and when reionisation occurred are still somewhat unclear.

Dark matter annihilation or decay could have a significant impact on the ionisation and thermal history of the universe.

In a recent paper (Liu et al. 2016) the authors study the potential contribution of dark matter annihilation (s-wave- or p-wave-dominated) or decay to cosmic reionisation, via the production of electrons, positrons and photons.

They map out the possible perturbations to the ionisation and thermal histories of the universe due to dark matter processes, over a broad range of velocity-averaged annihilation cross-sections/decay lifetimes and dark matter masses.

They find that for dark matter models that are consistent with experimental constraints, a contribution of more than 10% to the ionisation fraction at reionisation is disallowed for all annihilation scenarios.

Such a contribution is possible only for decays into electron/positron pairs, for light dark matter with mass mχ ≲ 100 MeV, and a decay lifetime τχ ∼1024−1025 s.


Liu et al. 2016 (preprint) - The Darkest Hour Before Dawn: Contributions to Cosmic Reionisation from Dark Matter Annihilation and Decay - (arXiv)

Comments

Popular posts from this blog

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. Such massive planets were not thought to exist ar...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).