Skip to main content

Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay

Image: A Schematic Outline of the Cosmic History - Credit: NASA/WMAP Science Team


The epoch of reionisation and the emergence of the universe from the cosmic dark ages is a subject of intense study in modern cosmology.


As baryonic matter began to collapse around initial fluctuations in the dark matter (DM) density seeded by inflation, the earliest galaxies in our universe began to form. These structures, perhaps accompanied by other sources, eventually began to emit ionising radiation, creating local patches of fully ionised hydrogen gas around them. These patches ultimately grew to encompass the entire universe, leading to the fully ionised intergalactic medium (IGM) that we observe today.

While the process of reionisation is broadly understood, the exact details of how and when reionisation occurred are still somewhat unclear.

Dark matter annihilation or decay could have a significant impact on the ionisation and thermal history of the universe.

In a recent paper (Liu et al. 2016) the authors study the potential contribution of dark matter annihilation (s-wave- or p-wave-dominated) or decay to cosmic reionisation, via the production of electrons, positrons and photons.

They map out the possible perturbations to the ionisation and thermal histories of the universe due to dark matter processes, over a broad range of velocity-averaged annihilation cross-sections/decay lifetimes and dark matter masses.

They find that for dark matter models that are consistent with experimental constraints, a contribution of more than 10% to the ionisation fraction at reionisation is disallowed for all annihilation scenarios.

Such a contribution is possible only for decays into electron/positron pairs, for light dark matter with mass mχ ≲ 100 MeV, and a decay lifetime τχ ∼1024−1025 s.


Liu et al. 2016 (preprint) - The Darkest Hour Before Dawn: Contributions to Cosmic Reionisation from Dark Matter Annihilation and Decay - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ) The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.