Skip to main content

Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay

Image: A Schematic Outline of the Cosmic History - Credit: NASA/WMAP Science Team


The epoch of reionisation and the emergence of the universe from the cosmic dark ages is a subject of intense study in modern cosmology.


As baryonic matter began to collapse around initial fluctuations in the dark matter (DM) density seeded by inflation, the earliest galaxies in our universe began to form. These structures, perhaps accompanied by other sources, eventually began to emit ionising radiation, creating local patches of fully ionised hydrogen gas around them. These patches ultimately grew to encompass the entire universe, leading to the fully ionised intergalactic medium (IGM) that we observe today.

While the process of reionisation is broadly understood, the exact details of how and when reionisation occurred are still somewhat unclear.

Dark matter annihilation or decay could have a significant impact on the ionisation and thermal history of the universe.

In a recent paper (Liu et al. 2016) the authors study the potential contribution of dark matter annihilation (s-wave- or p-wave-dominated) or decay to cosmic reionisation, via the production of electrons, positrons and photons.

They map out the possible perturbations to the ionisation and thermal histories of the universe due to dark matter processes, over a broad range of velocity-averaged annihilation cross-sections/decay lifetimes and dark matter masses.

They find that for dark matter models that are consistent with experimental constraints, a contribution of more than 10% to the ionisation fraction at reionisation is disallowed for all annihilation scenarios.

Such a contribution is possible only for decays into electron/positron pairs, for light dark matter with mass mχ ≲ 100 MeV, and a decay lifetime τχ ∼1024−1025 s.


Liu et al. 2016 (preprint) - The Darkest Hour Before Dawn: Contributions to Cosmic Reionisation from Dark Matter Annihilation and Decay - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.