Skip to main content

The neutron-star low-mass X-ray binary GX 9+1


Figure - An artist's impression of an accreting Low Mass X-ray Binary. The donor star fills its Roche lobe and its material overflows the inner Lagrangian points and accretes on the relativistic star. Due to the large angular momentum of the infalling material an accretion disk is formed around the compact object. Credit: ESA, NASA, and Felix Mirabel (French Atomic Energy Commission and Institute for Astronomy and Space Physics/Conicet of Argentina)

A low-mass X-ray binary (LMXB) contains a neutron star which is accreting material via Roche lobe overflow from a companion star. Due to the high angular momentum of the accretion flow an accretion disc is formed around the compact object.

In a recent paper (van den Berg & Homan 2016) the authors have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data and they have identified a new near-infrared (NIR) counterpart to GX 9+1 in Ks-band images obtained with the PANIC and FourStar cameras on the Magellan Baade Telescope.

The NIR spectrum is consistent with thermal emission from a heated accretion disk, possibly with a contribution from the secondary. In this respect, GX 9+1 is similar to other bright atolls and the Z sources (typical types of neutron-star sources in low mass X-ray binaries, which present a wide variety in X-ray spectral and variability properties) whose NIR spectra do not show the slope that is expected for a dominant contribution from optically thin synchrotron emission from the inner regions of a jet.

  • van den Berg & Homan - 2016 (accepted in Apj) - On the origin of the near-infrared emission from the neutron-star low-mass X-ray binary GX 9+1 (arXiv)

Comments

Popular posts from this blog

A METHOD TO TEST THE EXISTENCE OF REGULAR BLACK HOLES

Illustration of a black hole. Image Credit & Copyright: Alain Riazuelo The existence of the singularity is an intrinsic problem of the General Relativity (GR). At the fundamentally level, the resolution of the problem of the singularity lies with the expectation that under situations where quantum effects become strong, the behavior of gravity could possibly greatly deviate from that predicted by the classical theory of GR. Regular black hole solution are proposed with the same spacetime geometry outside the horizon as the traditional black hole, but bears no singularity inside. Whether or not black hole singularities should exist, they would be covered by the black hole horizon. The black hole horizon serves as an information curtain hindering outside observers from directly observing the interior structure of the black hole, and determining that whether or not the black hole singularity does really exist. A method is needed to check the correctness of the new constructions ...

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).