Skip to main content

Importance of Supernovae in the Enrichment of Planetary Systems

Figure: Called the Veil Nebula, the debris is one of the best-known supernova remnants, deriving its name from its delicate, draped filamentary structures. This view is a mosaic of six Hubble pictures of a small area roughly two light-years across, covering only a tiny fraction of the nebula’s vast structure. Credit: NASA/ESA/Hubble Heritage Team


The presence and abundance of short lived radioisotopes in chondritic meteorites implies that the Sun formed in the vicinity of one or more massive stars that exploded as supernovae (SNe).



Massive stars are more likely to form in massive star clusters (>1000 M⊙) than lower mass clusters. However, photoevaporation of protoplanetary discs from massive stars and dynamical interactions with passing stars can inhibit planet formation in clusters with radii of ∼1 pc.

In a recent paper (Nicholson & Parker 2016) the authors investigate whether low-mass (50 - 200 M⊙) star clusters containing one or two massive stars are a more likely avenue for early Solar system enrichment as they are more dynamically quiescent.

They analyze N-body simulations of the evolution of these low-mass clusters and find that a similar fraction of stars experience supernova enrichment than in high mass clusters, despite their lower densities.

This is due to two-body relaxation, which causes a significant expansion before the first supernova even in clusters with relatively low initial densities.  However, because of the high number of low mass clusters containing one or two massive stars, the absolute number of enriched stars is the same, if not higher than for more populous clusters.

Their results show that direct enrichment of protoplanetary discs from supernovae occurs as frequently in low mass clusters containing one or two massive stars (>20 M⊙) as in more populous star clusters (1000 M⊙).

This relaxes the constraints on the direct enrichment scenario and therefore the birth environment of the Solar System.

  • Nicholson & Parker 2016 (accepted in MNRAS) - Supernova enrichment of planetary systems in low-mass star clusters (arXiv)

Comments

Popular posts from this blog

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A BINARY ORIGIN FOR A CENTRAL COMPACT OBJECT (CCO)?

Figure: False-Colour X-ray and infrared emission image from the core of the infrared shell. The RGB colours correspond to Chandra X-ray 0.2-10 keV (blue), IRAC infrared 8 μm (green), and HPACS 70 μm (red) data. The intensity scale is logarithmic for all channels. Overlaid are equal brightness levels from the MIPS 24 μm band. Note that around the CCO the infrared emission is suppressed in the 70 μm band and enhanced in the 24 μm band suggesting higher dust temperature. Credit: Doroshenko et al 2016 Central compact objects (CCOs) are thought to be young isolated neutron stars that were born during the preceding core-collapse supernova explosion.