Skip to main content

The Big-Bang Theory

This image represents the evolution of the Universe, starting with the Big Bang. The red arrow marks the flow of time. Credit: NASA


Over the past century, rooted in the theory of general relativity, cosmology has developed a very successful physical model of the universe: the big-bang model. Its construction followed different stages to incorporate nuclear processes, the understanding of the matter present in the universe, a description of the early universe and of the large scale structure. This model has been confronted to a variety of observations that allow one to reconstruct its expansion history, its thermal history and the structuration of matter. Hence, what we refer to as the big-bang model today is radically different from what one may have had in mind a century ago. This construction changed our vision of the universe, both on observable scales and for the universe as a whole. It offers in particular physical models for the origins of the atomic nuclei, of matter and of the large scale structure.

In a recent text (Jean-Philippe Uzan 2016) the author summarizes the main steps of the construction of the model, linking its main predictions to the observations that back them up. It also discusses its weaknesses, the open questions and problems, among which the need for a dark sector including dark matter and dark energy.

Links

Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...