Skip to main content

Boulevard of Broken Rings

Credit: ESO/Perrot


This Picture illustrates the remarkable capabilities of SPHERE (the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument), a planet-hunting instrument mounted on ESO's Very Large Telescope (VLT) in Chile: It shows a series of broken rings of dust around a nearby star. These concentric rings are located in the inner region of the debris disc surrounding a young star named HD 141569A, which sits some 370 light-years away from us.

In this image we see what is known as a transition disc, a short-lived stage between the protoplanetary phase, when planets have not yet formed, and a later time when planets have coalesced, leaving the disc populated only by any remaining - and predominantly dusty - debris.

What we see here are structures formed of dust, revealed for the first time in near-infrared light by SPHERE - at a high enough resolution to capture remarkable detail! The area shown in this image has a diameter of just 200 times the Earth–Sun distance.

Several features are visible, including a bright, prominent ring with well-defined edges - so asymmetric that it appears as a half-ring - multiple clumps, several concentric ringlets, and a pattern akin to a spiral arm. It is significant that these structures are asymmetric; this may reflect an uneven, or clumpy, distribution of dust in the disc, something for which astronomers do not currently have a firm explanation. It is possible that this phenomenon is caused by the presence of planets, but so far no planets of sufficient size to do this have been found in this system.

Links

  • Research paper - C. Perrot et al., Discovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE.

Text Credit: ESO


Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...

CONTAMINATION BY SUPERNOVAE IN GLOBULAR CLUSTERS

Credit: ALMA (ESO/NAOJ/NRAO)/Alexandra Angelich (NRAO/AUI/NSF) Only a small amount of the supernovae products remains trapped within globular clusters and this "catch" only occurs in the most massive cases (mass cluster ≥ 10^6 solar masses).