Skip to main content

TYPE IA SUPERNOVAE LUMINOSITY DEPENDS ON THE METALLICITY OF THEIR HOST GALAXIES

Image: Combined HST and Chnadra imaging of the supernova remnant SNR 0509-67.5 in the LMC

To find distances in space, astronomers use objects called "standard candles", objects that give a certain, known amount of light. Because astronomers know how bright these objects truly are, they can measure their distance from us by analyzing how dim they appear.


Type Ia supernovae, observed in all kinds of galaxies, are produced by white dwarf stars (the condensed remnant of what used to be sun-like stars) in a binary system and they are standard candles. The companion star can be a giant star or even a smaller white dwarf. White dwarf stars are one of the densest forms of matter, second only to neutron stars and black holes.

If accretion of matter from a companion star or the merger with another white dwarf, push a white dwarf star over the Chandrasekhar limit of 1.4 solar masses, the temperature in the core of the white dwarf will rise, triggering explosive nuclear fusion reactions that release an enormous amount of energy (supernova explosion). The star explodes in about ten seconds, leaving no remnant. The resulting light is 5 billion times brighter than the Sun.

Image: Evolution of a Type Ia supernova. Credit: NASA/CXC/M.Weiss

Because Type Ia supernovas all occur in a star that has a mass of about 1.4 solar masses, they produce about the same amount of light. The stability of this value allows these explosions to be used as standard candles to measure the distance to their host galaxies because the visual magnitude of the supernovae depends primarily on the distance. In recent years Type Ia supernova have been used in this way to determine the rate of expansion of the universe. This research has led to the astounding discovery that the expansion of the universe is accelerating, possibly because the universe is filled with a mysterious substance called dark energy.

The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. In a recent paper (Moreno-Raya et al. 2016) published in ApJL, the authors present an observational study to investigate if such a relationship there exists. Using the 4.2m William Herschel Telescope (WHT), at El Roque de Los Muchachos Observatory (La Palma, Spain), they have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia. From the emission lines observed in their optical spectrum, they derived the gas-phase oxygen abundance in the region where each SN Ia exploded.

Their data show a trend, with a 80% of chance not to be due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems like to be in agreement with both the theoretically expected behavior, and with other observational results.

The authors argue that the standard calibration tends to overestimate the maximum luminosities of SNe Ia located in metal-rich galaxies. This dependence might induce to systematic errors when is not considered in deriving SNe Ia luminosities and then using them to derive cosmological distances.


Moreno-Raya et al., 2016 ApJL - On the dependence of the type Ia SNe luminosities on the metallicity of their host galaxies (arXiv)

▪ Type Ia supernova - HubbleSite - Chandra - Wikipedia


Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ) The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.