Skip to main content

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system.
Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ)


The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.


It is not clear how the planets form in a binary stars system. Observational evidence reveals that planets form and maintain surprisingly stable orbits around double stars disproving the theoretical models that suggest that the gravitational tug-of-war between two stellar bodies would send young planets into eccentric orbits, possibly ejecting them completely from their home system or sending them crashing into their stars.

ALMA's new, high-resolution images of HD 142527 show a broad elliptical ring around the double star (main star ~ 2 Msun - companion star ~1/3 Msun). The stars are separated by approximately one billion miles: a little more than the distance from the Sun to Saturn. The disk begins incredibly far from the central star - about 50 times the Sun-Earth distance. Most of it consists of gases, including two forms of carbon monoxide (13CO and C180), but there is a noticeable dearth of gases within a huge arc of dust that extends nearly a third of the way around the star system.

Image: Artist impression of the HD 142527 binary star system based on data from the Atacama Large Millimeter/submillimeter Array (ALMA). The rendition shows a distinctive arc of dust (red) embedded in the protoplanetary disk. The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: B. Saxton (NRAO/AUI/NSF)


This crescent-shaped dust cloud may be the result of gravitational forces unique to binary stars and may also be the key to the formation of planets. The current theoretical models suggest that small dust grains and pockets of gas eventually come together under gravity, forming larger and larger agglomerations and eventually asteroids and planets. The fine points of this process are not well understood, however. By studying a wide range of protoplanetary disks with ALMA, astronomers hope to better understand the conditions that set the stage for planet formation across the Universe.

The full story is available here>>
ALMA Unveils Details of Planet Formation around Binary Star


Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW MACRONOVA'S MODEL

Image: The sequence illustrates the macronova model for the formation of a short-duration gamma-ray burst. 1. A pair of neutron stars in a binary system spiral together. 2. In the final milliseconds, as the two objects merge, they kick out highly radioactive material. This material heats up and expands, emitting a burst of light called a macronova. 3. The fading fireball blocks visible light but radiates in infrared light. 4. A remnant disk of debris surrounds the merged object, which may have collapsed to form a black hole Credit: NASA, ESA, and A. Feild (STScI) A macronova (also called a 'kilonova' or an 'r-process supernova' ) occurs when two neutron stars or a neutron star and a black hole merge. It is a near-infrared/optical transient powered by the radioactive decay of heavy elements synthesized in the ejecta (~10 -4 -10 -1 M sun with velocities ~ 0.1-0.3c) of a compact binary merger. Strong electromagnetic radiation is emitted due to the decay of h

Antares overlooking an Auxiliary Telescope

Credit: ESO/B. Tafreshi Brilliant blue stars litter the southern sky and the  galactic bulge  of our home galaxy, the Milky Way, hangs serenely above the horizon in this spectacular shot of ESO’s Paranal Observatory. This image was taken atop Cerro Paranal in Chile, home to ESO’s  Very Large Telescope  (VLT). In the foreground, the open dome of one of the four 1.8-metre  Auxiliary Telescopes  can be seen. The four Auxiliary Telescopes can be utilised together, to form the  Very Large Telescope Interferometer  (VLTI). The plane of the Milky Way is dotted with bright regions of hot gas. The very bright star towards the upper left corner of the frame is  Antares  — the brightest star in  Scorpius  and the fifteenth brightest star in the night sky. Text Credit:  ESO Resources Antares overlooking an Auxiliary Telescope Next Post Small Asteroid or Comet 'Visits' from Beyond the Solar System