Skip to main content

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system.
Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ)


The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.


It is not clear how the planets form in a binary stars system. Observational evidence reveals that planets form and maintain surprisingly stable orbits around double stars disproving the theoretical models that suggest that the gravitational tug-of-war between two stellar bodies would send young planets into eccentric orbits, possibly ejecting them completely from their home system or sending them crashing into their stars.

ALMA's new, high-resolution images of HD 142527 show a broad elliptical ring around the double star (main star ~ 2 Msun - companion star ~1/3 Msun). The stars are separated by approximately one billion miles: a little more than the distance from the Sun to Saturn. The disk begins incredibly far from the central star - about 50 times the Sun-Earth distance. Most of it consists of gases, including two forms of carbon monoxide (13CO and C180), but there is a noticeable dearth of gases within a huge arc of dust that extends nearly a third of the way around the star system.

Image: Artist impression of the HD 142527 binary star system based on data from the Atacama Large Millimeter/submillimeter Array (ALMA). The rendition shows a distinctive arc of dust (red) embedded in the protoplanetary disk. The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: B. Saxton (NRAO/AUI/NSF)


This crescent-shaped dust cloud may be the result of gravitational forces unique to binary stars and may also be the key to the formation of planets. The current theoretical models suggest that small dust grains and pockets of gas eventually come together under gravity, forming larger and larger agglomerations and eventually asteroids and planets. The fine points of this process are not well understood, however. By studying a wide range of protoplanetary disks with ALMA, astronomers hope to better understand the conditions that set the stage for planet formation across the Universe.

The full story is available here>>
ALMA Unveils Details of Planet Formation around Binary Star


Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...