Skip to main content

STELLAR SURFACE GRAVITY FROM THE TIME SCALES OF THE BRIGHTNESS VARIATION



Recently, some authors (Kallinger et al. 2016) proposed a new method to derive the stars' surface gravity "g". This parameter is fundamental to derive the mass and radius of the star itself. Mass and radius, in turn, are essential quantity for a correct estimate of the mass and size of extrasolar planets orbiting around it.


So far the measure of "g" was obtained by evaluating the amplitude of the brightness variations. However many stars are too faint to be studied with this approach.
The new method is suggested to analyze the time-scale of these variations due to the surface convection (seen as granulations) and the acoustic oscillations (p-mode pulsation) reaching an error of just 4%.
One of the advantages of this new method (valid for stars with masses between 0.8 and 3 solar masses) is that it is largely independent of the activity level of a star.

► Read more>>
http://advances.sciencemag.org/content/2/1/e1500654.full

► Image Credit:
Wikimedia Common

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...

CONTAMINATION BY SUPERNOVAE IN GLOBULAR CLUSTERS

Credit: ALMA (ESO/NAOJ/NRAO)/Alexandra Angelich (NRAO/AUI/NSF) Only a small amount of the supernovae products remains trapped within globular clusters and this "catch" only occurs in the most massive cases (mass cluster ≥ 10^6 solar masses).