Skip to main content

Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays?



Fujita et al. (2016) explore the possibility that Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, significantly contributes to the observed TeV-PeV cosmic rays (CRs) as a Galactic PeV particle accelerator ("Pevatron").


They show that a large number of TeV-PeV CRs may have been injected from Sgr A*, and that those CRs may have filled in the Galactic halo and some of them may have entered the Galactic disk.

Based on a diffusion-halo model, they solve diffusion equations for the CRs and compare the results with the CR spectrum and the anisotropy observed on the Earth as well as the diffuse gamma-ray emission from the Central Molecular Zone (CMZ) surrounding Sgr A*.

Image: This Chandra image shows the region around Sgr A* in low, medium, and high-energy X-rays that have been colored red, green, and blue respectively. Sgr A* is located within the white area in the center of the image. The blue and orange plumes around that area may be the remains of outbursts from Sgr A* that occurred millions of years ago. Credit: NASA/CXC/Univ. of Wisconsin/Y.Bai. et al.
They find that the CR spectrum, the anisotropy and the recent gamma-ray observations with the High Energy Stereoscopic System (HESS) can be explained simultaneously if

  1. Sgr A* was more active in the past
  2. the CR spectrum at the source (Sgr A*) is relatively hard
  3. the diffusion coefficient for the Galactic disk is small
  4. the energy dependence of the diffusion coefficient is different between the CMZ and the halo.

  • Fujita et al 2016 (preprint) - Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays? (arXiv)


Comments

Popular posts from this blog

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A BINARY ORIGIN FOR A CENTRAL COMPACT OBJECT (CCO)?

Figure: False-Colour X-ray and infrared emission image from the core of the infrared shell. The RGB colours correspond to Chandra X-ray 0.2-10 keV (blue), IRAC infrared 8 μm (green), and HPACS 70 μm (red) data. The intensity scale is logarithmic for all channels. Overlaid are equal brightness levels from the MIPS 24 μm band. Note that around the CCO the infrared emission is suppressed in the 70 μm band and enhanced in the 24 μm band suggesting higher dust temperature. Credit: Doroshenko et al 2016 Central compact objects (CCOs) are thought to be young isolated neutron stars that were born during the preceding core-collapse supernova explosion.