Skip to main content

Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays?



Fujita et al. (2016) explore the possibility that Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, significantly contributes to the observed TeV-PeV cosmic rays (CRs) as a Galactic PeV particle accelerator ("Pevatron").


They show that a large number of TeV-PeV CRs may have been injected from Sgr A*, and that those CRs may have filled in the Galactic halo and some of them may have entered the Galactic disk.

Based on a diffusion-halo model, they solve diffusion equations for the CRs and compare the results with the CR spectrum and the anisotropy observed on the Earth as well as the diffuse gamma-ray emission from the Central Molecular Zone (CMZ) surrounding Sgr A*.

Image: This Chandra image shows the region around Sgr A* in low, medium, and high-energy X-rays that have been colored red, green, and blue respectively. Sgr A* is located within the white area in the center of the image. The blue and orange plumes around that area may be the remains of outbursts from Sgr A* that occurred millions of years ago. Credit: NASA/CXC/Univ. of Wisconsin/Y.Bai. et al.
They find that the CR spectrum, the anisotropy and the recent gamma-ray observations with the High Energy Stereoscopic System (HESS) can be explained simultaneously if

  1. Sgr A* was more active in the past
  2. the CR spectrum at the source (Sgr A*) is relatively hard
  3. the diffusion coefficient for the Galactic disk is small
  4. the energy dependence of the diffusion coefficient is different between the CMZ and the halo.

  • Fujita et al 2016 (preprint) - Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays? (arXiv)


Comments

Popular posts from this blog

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONTAMINATION BY SUPERNOVAE IN GLOBULAR CLUSTERS

Credit: ALMA (ESO/NAOJ/NRAO)/Alexandra Angelich (NRAO/AUI/NSF) Only a small amount of the supernovae products remains trapped within globular clusters and this "catch" only occurs in the most massive cases (mass cluster ≥ 10^6 solar masses).