Skip to main content

Dark matter versus modified gravity



The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made.


A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter.

This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745, one of the most massive galaxy clusters known and also the largest known gravitational lens. Credit: NASA, ESA and the HST Frontier Fields team (STScI)
In a recent paper (Lin & Ishak 2016) the authors consider ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. They compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a trend of loss of correlation for the UFD galaxies.

For example, they find for 28 non-UFD galaxies a strong correlation coefficient of -0.688 which drops to -0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data.

Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  • Lin & Ishak 2016 (preprint) - Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity (arXiv)

Comments

Popular posts from this blog

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A BINARY ORIGIN FOR A CENTRAL COMPACT OBJECT (CCO)?

Figure: False-Colour X-ray and infrared emission image from the core of the infrared shell. The RGB colours correspond to Chandra X-ray 0.2-10 keV (blue), IRAC infrared 8 μm (green), and HPACS 70 μm (red) data. The intensity scale is logarithmic for all channels. Overlaid are equal brightness levels from the MIPS 24 μm band. Note that around the CCO the infrared emission is suppressed in the 70 μm band and enhanced in the 24 μm band suggesting higher dust temperature. Credit: Doroshenko et al 2016 Central compact objects (CCOs) are thought to be young isolated neutron stars that were born during the preceding core-collapse supernova explosion.