Skip to main content

Dark matter versus modified gravity



The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made.


A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter.

This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745, one of the most massive galaxy clusters known and also the largest known gravitational lens. Credit: NASA, ESA and the HST Frontier Fields team (STScI)
In a recent paper (Lin & Ishak 2016) the authors consider ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. They compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a trend of loss of correlation for the UFD galaxies.

For example, they find for 28 non-UFD galaxies a strong correlation coefficient of -0.688 which drops to -0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data.

Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  • Lin & Ishak 2016 (preprint) - Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.