Skip to main content

Dark matter versus modified gravity



The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made.


A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter.

This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745, one of the most massive galaxy clusters known and also the largest known gravitational lens. Credit: NASA, ESA and the HST Frontier Fields team (STScI)
In a recent paper (Lin & Ishak 2016) the authors consider ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. They compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a trend of loss of correlation for the UFD galaxies.

For example, they find for 28 non-UFD galaxies a strong correlation coefficient of -0.688 which drops to -0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data.

Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  • Lin & Ishak 2016 (preprint) - Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity (arXiv)

Comments

Popular posts from this blog

A METHOD TO TEST THE EXISTENCE OF REGULAR BLACK HOLES

Illustration of a black hole. Image Credit & Copyright: Alain Riazuelo The existence of the singularity is an intrinsic problem of the General Relativity (GR). At the fundamentally level, the resolution of the problem of the singularity lies with the expectation that under situations where quantum effects become strong, the behavior of gravity could possibly greatly deviate from that predicted by the classical theory of GR. Regular black hole solution are proposed with the same spacetime geometry outside the horizon as the traditional black hole, but bears no singularity inside. Whether or not black hole singularities should exist, they would be covered by the black hole horizon. The black hole horizon serves as an information curtain hindering outside observers from directly observing the interior structure of the black hole, and determining that whether or not the black hole singularity does really exist. A method is needed to check the correctness of the new constructions ...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

Importance of Supernovae in the Enrichment of Planetary Systems

Figure: Called the Veil Nebula, the debris is one of the best-known supernova remnants, deriving its name from its delicate, draped filamentary structures. This view is a mosaic of six Hubble pictures of a small area roughly two light-years across, covering only a tiny fraction of the nebula’s vast structure. Credit: NASA/ESA/Hubble Heritage Team The presence and abundance of short lived radioisotopes in chondritic meteorites implies that the Sun formed in the vicinity of one or more massive stars that exploded as supernovae (SNe).