Skip to main content

Warm Jupiters from secular planet-planet interactions



Image: Illustration of a warm Jupiter planet. Credit: X-ray: NASA/CXC/SAO/I.Pillitteri et al; Optical: DSS

Most warm Jupiters have pericenter distances that are too large for significant orbital migration by tidal friction.


In a recent paper (Petrovich & Tremaine 2016) the authors study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit.

In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities.

The authors show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys.

The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities (e≲0.2) that must be explained by a different formation mechanism.

Based on a population-synthesis study they find that high-eccentricity migration excited by an outer planetary companion (i) can account for ∼20% of the warm Jupiters and most of the warm Jupiters with e≳0.4, a fraction that is consistent with the observed population of warm Jupiters with outer companions; (ii) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼60% of hot Jupiters with projected obliquities ≲20°.

Thus ∼20% of the warm Jupiters and ∼60% of the hot Jupiters can be produced by high-eccentricity migration. They also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  • Petrovich & Tremaine 2016 (preprint) - Warm Jupiters from secular planet-planet interactions - (arXiv)




Comments

Popular posts from this blog

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.