Skip to main content

Warm Jupiters from secular planet-planet interactions



Image: Illustration of a warm Jupiter planet. Credit: X-ray: NASA/CXC/SAO/I.Pillitteri et al; Optical: DSS

Most warm Jupiters have pericenter distances that are too large for significant orbital migration by tidal friction.


In a recent paper (Petrovich & Tremaine 2016) the authors study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit.

In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities.

The authors show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys.

The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities (e≲0.2) that must be explained by a different formation mechanism.

Based on a population-synthesis study they find that high-eccentricity migration excited by an outer planetary companion (i) can account for ∼20% of the warm Jupiters and most of the warm Jupiters with e≳0.4, a fraction that is consistent with the observed population of warm Jupiters with outer companions; (ii) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼60% of hot Jupiters with projected obliquities ≲20°.

Thus ∼20% of the warm Jupiters and ∼60% of the hot Jupiters can be produced by high-eccentricity migration. They also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  • Petrovich & Tremaine 2016 (preprint) - Warm Jupiters from secular planet-planet interactions - (arXiv)




Comments

Popular posts from this blog

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...

Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay

Image: A Schematic Outline of the Cosmic History - Credit: NASA/WMAP Science Team The epoch of reionisation and the emergence of the universe from the cosmic dark ages is a subject of intense study in modern cosmology.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...