Skip to main content

Warm Jupiters from secular planet-planet interactions



Image: Illustration of a warm Jupiter planet. Credit: X-ray: NASA/CXC/SAO/I.Pillitteri et al; Optical: DSS

Most warm Jupiters have pericenter distances that are too large for significant orbital migration by tidal friction.


In a recent paper (Petrovich & Tremaine 2016) the authors study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit.

In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities.

The authors show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys.

The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities (e≲0.2) that must be explained by a different formation mechanism.

Based on a population-synthesis study they find that high-eccentricity migration excited by an outer planetary companion (i) can account for ∼20% of the warm Jupiters and most of the warm Jupiters with e≳0.4, a fraction that is consistent with the observed population of warm Jupiters with outer companions; (ii) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼60% of hot Jupiters with projected obliquities ≲20°.

Thus ∼20% of the warm Jupiters and ∼60% of the hot Jupiters can be produced by high-eccentricity migration. They also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  • Petrovich & Tremaine 2016 (preprint) - Warm Jupiters from secular planet-planet interactions - (arXiv)




Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

ABOUT THE FORMATION OF THE COLD CLASSICAL KUIPER BELT

Image: The Kuiper Belt. Credit: NASA . The Kuiper belt is a circumstellar disc in the Solar System beyond the planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt (the circumstellar disc located roughly between the orbits of the planets Mars and Jupiter), but it is far larger-20 times as wide and 20 to 200 times as massive.