Skip to main content

Dynamical constraints on the origin of hot and warm Jupiters with close friends


Image: Artist's concept of a "hot Jupiter" - Credit: NASA/JPL-Caltech

Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out.

In a recent paper (Antonini et al 2016) the authors consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. They show that the majority of the observed Jupiter pairs (twenty out of twenty-four) will be dynamically unstable if the inner planet was placed at >~1AU distance from the stellar host.

This finding is at odds with formation theories that invoke the migration of such planets from semi-major axes >~1AU due to secular dynamical processes (e.g., secular chaos, Lidov-Kozai oscillations) coupled with tidal dissipation. In fact, the results of N-body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star.

This and other arguments lead the authors to suggest that most of the observed planets with a companion could not have been transported from further out through secular migration processes. More generally, by using a combination of numerical and analytic techniques they show that the high-e Lidov-Kozai migration scenario can only account for less than 10% of all gas giants observed between 0.1-1 AU.

Simulations of multi-planet systems support this result. Their study indicates that rather than starting on highly eccentric orbits with orbital periods above one year, these "warm" Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  • Antonini et al 2016 (preprint) - Dynamical constraints on the origin of hot and warm Jupiters with close friends - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

RADIATIVE CLEARING OF PROTOPLANETARY DISCS

Image: protoplanetary disc surrounding the young star HL Tauri, a very young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO) T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).