Skip to main content

Dynamical constraints on the origin of hot and warm Jupiters with close friends


Image: Artist's concept of a "hot Jupiter" - Credit: NASA/JPL-Caltech

Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out.

In a recent paper (Antonini et al 2016) the authors consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. They show that the majority of the observed Jupiter pairs (twenty out of twenty-four) will be dynamically unstable if the inner planet was placed at >~1AU distance from the stellar host.

This finding is at odds with formation theories that invoke the migration of such planets from semi-major axes >~1AU due to secular dynamical processes (e.g., secular chaos, Lidov-Kozai oscillations) coupled with tidal dissipation. In fact, the results of N-body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star.

This and other arguments lead the authors to suggest that most of the observed planets with a companion could not have been transported from further out through secular migration processes. More generally, by using a combination of numerical and analytic techniques they show that the high-e Lidov-Kozai migration scenario can only account for less than 10% of all gas giants observed between 0.1-1 AU.

Simulations of multi-planet systems support this result. Their study indicates that rather than starting on highly eccentric orbits with orbital periods above one year, these "warm" Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  • Antonini et al 2016 (preprint) - Dynamical constraints on the origin of hot and warm Jupiters with close friends - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.