Skip to main content

Upper Limit on the Milky Way Mass

This image from the Hubble Space Telescope shows the small galaxy called the Sagittarius dwarf irregular galaxy, or "SagDIG" for short. SagDIG is relatively nearby, and Hubble's sharp vision is able to reveal many thousands of individual stars within the galaxy. Credit: NASA, ESA, and The Hubble Heritage Team STScI/AURA


As one of the most massive Milky Way satellites, the Sagittarius dwarf galaxy has played an important role in shaping the Galactic disk and stellar halo morphologies. The disruption of Sagittarius over several close-in passages has populated the halo of our Galaxy with large-scale tidal streams and offers a unique diagnostic tool for measuring its gravitational potential.

In a recent paper (Dierickx, Loeb 2017) the authors test different progenitor mass models for the Milky Way and Sagittarius by modeling the full infall of the satellite. They constrain the mass of the Galaxy based on the observed orbital parameters and multiple tidal streams of Sagittarius.

This artist's concept depicts the most up-to-date information about the shape of our own Milky Way galaxy. Credits: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)


Their semi-analytic modeling of the orbital dynamics agrees with full N-body simulations, and favors low values for the Milky Way mass, 1012MSun.


  • Marion I. P. Dierickx, Abraham Loeb - Upper Limit on the Milky Way Mass from the Orbit of the Sagittarius Dwarf Satellite - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

RADIATIVE CLEARING OF PROTOPLANETARY DISCS

Image: protoplanetary disc surrounding the young star HL Tauri, a very young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO) T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.