Skip to main content

STELLAR WIND NEAR MASSIVE BLACK HOLES

Image: X-rays from Chandra in blue and infrared emission from the Hubble Space Telescope in red and yellow. The inset shows a close-up view of Sgr A* in X-rays only, covering a region half a light year wide. The diffuse X-ray emission is from hot gas captured by the black hole and being pulled inwards. This hot gas originates from winds produced by a disk-shaped distribution of young massive stars observed in infrared observations. Credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

Within the central tenth of a parsec in the middle of our galaxy there is a concentration of young stars (S-stars) that interact with a supermassive black hole Sagittarius A* (Sgr A*).


The S-stars in the galactic center are thought to be massive, early B-type stars and therefore should exhibit hot stellar winds. These winds provide gaseous material that can be accreted by the black hole which is thought to be the source of X-ray emission close to Sgr A*.

Image: Morgan-Keenan-Kellman spectral classification of main-sequence stars (Sun - type G).
Credit: LucasVB / Wikimedia.
In contrast to gas, the orbits of the stars are governed by gravitation only and therefore provide an excellent tracer for the gravitational potential in our Galactic center. This unique setup provides the best measurement of the mass of a black hole to date and unambiguously confirms the existence of a supermassive black hole in the center of our galaxy.

In a recent paper (Lutzgendorf et al 2016), the authors simulate the gravitational physics, stellar evolution and hydrodynamics of the S-stars orbiting the supermassive black hole, and they use this framework to determine the amount of gas that is accreted onto the black hole.

Image: snapshots at 6 different times in the simulation. The images are centered on the black hole (white cross). The initial position of the stars are marked in the first panel with green circles. Credit: Lutzgendorf et al 2016.

They found that the accretion rate is sensitive to the wind properties of the S-stars, and that the simulations are consistent with the observed accretion rate of Sgr A* (~10^{-6} solar masses/year) only if the stars exhibit high wind massloss rates that are comparable with those of evolved 7-10 Myr old stars with masses of M=19-25 solar masses. This result is in contrast with observations that have shown that these stars are rather young, main-sequence B-stars.
The authors conclude that the S-stars in their present stage are not the main contributors to the accretion rate of Sgr A* and the inflow of gas from the massive O-stars (located farther from Sgr A*) is needed.

(Animation of the simulation - Lutzgendorf et al 2016)

The paper (Lutzgendorf et al 2016) is available online and is published in the MNRAS. >>
http://arxiv.org/abs/1512.03304
http://mnras.oxfordjournals.org/content/456/4/3645.abstract

Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...