Skip to main content

LONG GAMMA RAY BURSTS TO INVESTIGATE THE STAR FORMATION IN DARK MATTER HALOS

These two false-color images compare the distribution of normal matter (red, left) with dark matter (blue, right) in the universe. The brightness of clumps corresponds to the density of mass. The comparison will provide insight on how structure formed in the evolving universe under the relentless pull of gravity. Credit: NASA, ESA, CalTech




Gamma-ray bursts (GRBs) are the most luminous explosive events in the cosmos, which can be detected even out to the edge of the Universe and they can be used to probe the properties of the high-z Universe, including high-z star formation history.


Long (>2 seconds) gamma-ray bursts (LGRBs) are powered by the core collapse of massive stars, so the cosmic GRB rate should in principle trace the cosmic star formation rate. It is important to note that stars can only form in structures that are suitably dense: the star formation occurs only if the mass of the dark matter halo of the collapsed structures is greater than the minimum value M_{min}.
Structures with masses smaller than M_{min} are considered as part of the intergalactic medium and do not take part in the star formation process.
The connection of LGRBs with the collapse of massive stars has provided a good opportunity for probing star formation in dark matter halos. The value M_{min} can be constrained by directly comparing the observed and expected redshift distributions of LGRBs.
In a recent paper (Wei et al. 2016), the authors used the latest Swift GRB data to obtain a value for the minimum mass of 10^{7.7} < M_{min} < 10^{10.7} solar masses. Below this limit the star formation process should not take place.

Read more >>
http://arxiv.org/pdf/1511.04483v1.pdf
http://www.sciencedirect.com/science/article/pii/S2214404815000658

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is