Skip to main content

NEWBORN PULSARS WITH A HIDDEN MAGNETIC FIELD


Image: Crab nebula as seen by Chandra. Credit: NASA/CXC/SAO/F. Seward et al.

In the center of several supernova remnants there are pulsars with significantly lower values of the dipolar magnetic field than the average radio-pulsar population (10^{12}G). A possible explanation requires the slow rotation of the proto-neutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels.


However, recent studies have shown that, even in the absence of rapid rotation, magnetic fields in pulsars can be amplified by other mechanisms such as convection and the standing accretion shock instability.
An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris onto the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. A high accretion rate can compress the magnetic field of the NS which can eventually be buried into the neutron star crust. As a result, the value of the external magnetic field would be significantly lower than the internal 'hidden' magnetic field.

Credit: Torres-Forné et al. 2016
 Once  the  accretion  process  stops,  the  magnetic  field  might eventually reemerge.
The main conclusion of a recent paper (Torres-Forné et al. 2016) is that typical magnetic fields of a few times 10^{12}G can be buried by accreting only 0.001-0.01 solar masses, a relatively modest amount of mass. The field would  only  reemerge  after a few thousand years.
On the contrary, magnetar-like field strengths are much harder to screen and the required accreted mass is very large,  in  some  cases  so  large that the neutron star would collapse to a black hole. The anomalously weak magnetic fields should be common in very young neutron stars.

Read more>>
http://arxiv.org/pdf/1511.03823v2.pdf
http://mnras.oxfordjournals.org/content/456/4/3813.abstract

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW MACRONOVA'S MODEL

Image: The sequence illustrates the macronova model for the formation of a short-duration gamma-ray burst. 1. A pair of neutron stars in a binary system spiral together. 2. In the final milliseconds, as the two objects merge, they kick out highly radioactive material. This material heats up and expands, emitting a burst of light called a macronova. 3. The fading fireball blocks visible light but radiates in infrared light. 4. A remnant disk of debris surrounds the merged object, which may have collapsed to form a black hole Credit: NASA, ESA, and A. Feild (STScI) A macronova (also called a 'kilonova' or an 'r-process supernova' ) occurs when two neutron stars or a neutron star and a black hole merge. It is a near-infrared/optical transient powered by the radioactive decay of heavy elements synthesized in the ejecta (~10 -4 -10 -1 M sun with velocities ~ 0.1-0.3c) of a compact binary merger. Strong electromagnetic radiation is emitted due to the decay of h

Antares overlooking an Auxiliary Telescope

Credit: ESO/B. Tafreshi Brilliant blue stars litter the southern sky and the  galactic bulge  of our home galaxy, the Milky Way, hangs serenely above the horizon in this spectacular shot of ESO’s Paranal Observatory. This image was taken atop Cerro Paranal in Chile, home to ESO’s  Very Large Telescope  (VLT). In the foreground, the open dome of one of the four 1.8-metre  Auxiliary Telescopes  can be seen. The four Auxiliary Telescopes can be utilised together, to form the  Very Large Telescope Interferometer  (VLTI). The plane of the Milky Way is dotted with bright regions of hot gas. The very bright star towards the upper left corner of the frame is  Antares  — the brightest star in  Scorpius  and the fifteenth brightest star in the night sky. Text Credit:  ESO Resources Antares overlooking an Auxiliary Telescope Next Post Small Asteroid or Comet 'Visits' from Beyond the Solar System