Skip to main content

NEWBORN PULSARS WITH A HIDDEN MAGNETIC FIELD


Image: Crab nebula as seen by Chandra. Credit: NASA/CXC/SAO/F. Seward et al.

In the center of several supernova remnants there are pulsars with significantly lower values of the dipolar magnetic field than the average radio-pulsar population (10^{12}G). A possible explanation requires the slow rotation of the proto-neutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels.


However, recent studies have shown that, even in the absence of rapid rotation, magnetic fields in pulsars can be amplified by other mechanisms such as convection and the standing accretion shock instability.
An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris onto the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. A high accretion rate can compress the magnetic field of the NS which can eventually be buried into the neutron star crust. As a result, the value of the external magnetic field would be significantly lower than the internal 'hidden' magnetic field.

Credit: Torres-Forné et al. 2016
 Once  the  accretion  process  stops,  the  magnetic  field  might eventually reemerge.
The main conclusion of a recent paper (Torres-Forné et al. 2016) is that typical magnetic fields of a few times 10^{12}G can be buried by accreting only 0.001-0.01 solar masses, a relatively modest amount of mass. The field would  only  reemerge  after a few thousand years.
On the contrary, magnetar-like field strengths are much harder to screen and the required accreted mass is very large,  in  some  cases  so  large that the neutron star would collapse to a black hole. The anomalously weak magnetic fields should be common in very young neutron stars.

Read more>>
http://arxiv.org/pdf/1511.03823v2.pdf
http://mnras.oxfordjournals.org/content/456/4/3813.abstract

Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...