Skip to main content

BYNARY BLACK HOLES OF STELLAR ORIGIN


Image: Two black holes are entwined in a gravitational tango in this artist's conception. Credit: NASA

A binary black hole (BBH) is a system consisting of two black holes in close orbit around each other. Binary black holes are often divided into stellar binary black holes, formed either as remnants of high-mass binary star systems or by dynamic processes and mutual capture, and binary supermassive black holes believed to be a result of galactic mergers.


The existence of stellar-mass binary black holes (and gravitational waves themselves) were finally confirmed when LIGO detected GW150914 (detected September 2015, announced February 2016), a distinctive gravitational wave signature of two merging stellar-mass black holes of around 30 solar masses each, occurring about 1.3 billion light years away.

In a very rapidly rotating star the material move from the hydrogen-rich envelope into the central burning regions and vice versa. If these processes are efficient the star evolves (quasi) chemically homogeneously.

In a recent paper (Mandel & De Mink 2016) the authors investigate the formation mechanism of binary black holes of stellar origin. They consider massive, tight binaries that evolve nearly chemically homogeneously leading to contraction during the evolution and preventing Roche lobe overflow. This evolutionary scenario predicts the formation of two massive helium stars that may eventually collapse to form two stellar-mass black holes.


Image: Artist's conception of a binary star. Credit: Casey Reed

The authors estimate that these binary black holes typically merge 4-11 Gyr after formation. They perform Monte Carlo simulations of the expected merger rate over cosmic time and obtain a merger rate of about 10 Gpc−3 yr−1 at redshift z = 0, peaking at twice this rate at z = 0.5. This values are competitive (in terms of expected rates) with the conventional formation scenarios that involve a common envelope phase during isolated binary evolution or dynamical interaction in a dense cluster.

Unlike the conventional isolated binary evolution channel, short time delays are unlikely for this scenario, implying that mergers at high redshift are not expected.

  • Mandel & De Mink 2016, MNRAS - Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries (arXiv)
  • Binary Black Hole - (astro.cardiff.ac.uk)(Wikipedia)

Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...