Skip to main content

STELLAR MASS GROWTH OF SPIRAL GALAXIES IN THE COSMIC WEB


Image: An illustration of the cosmic web. Credit: NASA/NCSA University of Illinois Visualization by Frank Summers, Space Telescope Science Institute, Simulation by Martin White and Lars Hernquist, Harvard University

The distribution of galaxies in the Universe forms a vast network of interconnected filamentary structures, sheets, and clusters which are separated by immense voids. This vast foam-like structure sometimes is called the "cosmic web".
The filamentary arrangement of galaxies is a direct consequence of perturbations in the initial density field of matter shortly after the Big Bang evolving under the influence of gravity over cosmic time.

A recent paper (Alpaslan et al. 2016, MNRAS) investigates the correlated changes in stellar mass and star formation rate along filaments in the cosmic web by examining the stellar masses and UV-derived star formation rates (SFR) of 1,799 spiral galaxies that reside in filaments.


Image: Galaxies, composed of gas, stars and dark matter, collide and form filaments in the large-scale universe Credit: NASA/Goddard Space Flight Center and the Advanced Visualization Laboratoy at the National Center for Supercomputing Applications

The authors find that galaxies closer to the cylindrical centre of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. In addition, these peripheral spiral galaxies have higher specific star formation rates (SSFR) at a given mass.

As expected, stellar mass of a spiral galaxy plays a dominant role in determining its star formation rate, but the authors find also that the distributions of the star formation rates vary with large-scale environment. For this reason, in addition to stellar mass as the primary discriminant, the large-scale environment is imprinted in the SFR as a second order effect.

Finally, their results suggest a model in which gas accretion from voids onto filaments is primarily in an orthogonal direction.



Related posts



Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ) The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.