Skip to main content

RAPIDLY ROTATING PULSARS AS POSSIBLE SOURCES OF FAST RADIO BURSTS

Image: Artist's impression of a magnetar. Credit: ESO/L. Calçada


In a recent paper (Lyutikov et al. 2016) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars (ages ~ tens to hundreds of years) born with regular magnetic field but very short - few milliseconds - spin periods.
A fast radio burst (FRB) is a high-energy astrophysical phenomenon manifested as a transient radio pulse lasting only a few milliseconds. They are bright, unresolved, broadband, millisecond flashes, found in parts of the sky outside the Milky Way.

The authors argued that the physical constraints imposed by the properties of FRBs limit their origin to the magnetospheres of neutron stars. Two special types could satisfy those constraints: fast rotating young neutron stars (using the rotational energy to generate FRBs), or very high magnetic fields neutron stars - magnetars (using the magnetic energy).

The key distinction between the two possibilities would be a detection of high energy emission contemporaneous with an FRB - Crab giant pulses do not show high energy signals.

  • Lyutikov et al. 2016 (preprint) - Fast radio bursts as giant pulses from young rapidly rotating pulsars - (arXiv)

Comments

Popular posts from this blog

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. Such massive planets were not thought to exist ar...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).