Skip to main content

SUPERNOVAE FROM WD-WD DIRECT COLLISIONS

Image: Supernova remnant N 63A. Credit: NASA/ESA/HEIC and The Hubble Heritage Team (STScI/AURA)

Models for supernovae (SNe) related to thermonuclear explosions of white dwarfs (WDs) have been extensively studied over the last few decades, mostly focusing on single degenerate (accretion of material of a WD) and double degenerate (WD-WD merger) scenarios.


In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for such explosions.

In a recent paper (Papish & Perets 2016) the authors investigate such explosions with a numerical code, and explore the role of Helium-shells in affecting the thermonuclear explosions.

They find that collisions of WDs with a high-mass He-shell give rise to helium detonation before the CO bulk detonation, while the helium detonation does not happen in the presence of a low-mass He-shell.

The authors conclude that the various effects arising from the contribution of low/high mass He layers change the kinematics and the morphological structure of collision-induced SNe and may thereby provide unique observational signatures for such SNe, and play a role in the chemical enrichment of galaxies and the production of intermediate elements and positrons from their longer-term decay.

  • Papish & Perets 2016 (accepted in ApJL)- Supernovae from direct collisions of white dwarfs and the role of helium shell ignition (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ABOUT THE FORMATION OF THE COLD CLASSICAL KUIPER BELT

Image: The Kuiper Belt. Credit: NASA . The Kuiper belt is a circumstellar disc in the Solar System beyond the planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt (the circumstellar disc located roughly between the orbits of the planets Mars and Jupiter), but it is far larger-20 times as wide and 20 to 200 times as massive.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.