Skip to main content

ROTATION CURVES OF GALAXIES AS A TEST OF MOND




Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. According to Newtonian gravity, the rotational velocity falls with distance from the center of a galaxy, while the observed data usually show an asymptotically flat rotation curve out to the furthest observationally accessible data points.


One solution to solve this problem is assuming a dark matter halo distributed around each galaxy.

An alternative approach is to replace dark matter by a modification of the Newtonian dynamics known as Milgromian dynamics (MOND). In the MOND the gravitational dynamics of a system is influenced by the external gravitational field in which it is embedded. This so called External Field Effect (EFE) is one of the important implications of MOND and provides a special context to test Milgromian dynamics.

In a recent paper (Haghi et al. 2016) the authors study the rotation curves of 18 spiral galaxies and they show that the EFE can successfully remedy the overestimation of rotation velocities in 80% of the sample galaxies in Milgromian dynamics fits by decreasing the velocity in the outer part of the rotation curves.

  • Haghi et al. 2016 (Accepted for publication in MNRAS) - Declining rotation curves of galaxies as a test of gravitational theory - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

RADIATIVE CLEARING OF PROTOPLANETARY DISCS

Image: protoplanetary disc surrounding the young star HL Tauri, a very young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO) T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.