Skip to main content

NO CORRELATION BETWEEN FERMI GBM SIGNAL AND GW150914

Image: Merging black holes. Credit: NASA

Recently it has been suggested that electromagnetic signals detected by Fermi GBM could be associated with the merger of the two black holes detected by LIGO (GW150914).


In a recent paper (Lyutikov 2016) the author assesses that the physical constraints required by the association of the Fermi GBM signal contemporaneous with GW150914 - radiative power of 1049 erg s−1, and corresponding magnetic fields on the black hole of the order of 1012 Gauss - are astrophysically highly implausible.

Combined with the relatively high random probability of coincidence of 0.22 percents, he concludes that the electromagnetic signal is likely unrelated to the BH merger.

  • Lyutikov 2016 (preprint) - Fermi GBM signal contemporaneous with GW150914 - an unlikely association (arXiv)

Comments

Popular posts from this blog

CONTAMINATION BY SUPERNOVAE IN GLOBULAR CLUSTERS

Credit: ALMA (ESO/NAOJ/NRAO)/Alexandra Angelich (NRAO/AUI/NSF) Only a small amount of the supernovae products remains trapped within globular clusters and this "catch" only occurs in the most massive cases (mass cluster ≥ 10^6 solar masses).

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.