Skip to main content

Understanding neutron-star evolution from magnetar flares


Image: A rupture in the crust of a highly magnetized neutron star, shown here in an artist's rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star's surface twists and vibrates, providing new insights into what lies beneath. Credits: NASA's Goddard Space Flight Center/S. Wiessinger

Some of the most intriguing neutron stars are the magnetars: highly magnetised objects whose surface fields are inferred to be in excess of 1014 G in some cases, and whose interior fields may reach 1016 G.

In contrast with many older, more predictable neutron stars, magnetars are volatile, alternating between quiescent states and highly energetic bursts and flares. Their most spectacular events are the giant flares, releasing over ~ 1045 erg of energy in a very brief flash and decaying X-ray tail.

The giant flares of magnetars are believed to be powered by colossal magnetic energy reservoirs.

In a recent paper (Lander 2016) the author sketches an evolutionary picture in which the process of giant flare energy release, from a twisted corona, begins with internal field evolution.

Given the ages of magnetars and the energy of their flares, he suggests that their evolution is driven by a novel evolutionary mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay.

He estimates the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. Field evolution in the superconducting core may also play a role in magnetar field evolution, depending on the star's spindown history and how rotational vortices and magnetic fluxtubes interact.

The author suggests that plastic flow will dominate NS crustal field evolution for B > 1015 G, compete with Hall drift in the outer crust for B ~ 1014 G, and probably be irrelevant for B < 1013 G. This suggests that it plays a key role for young magnetars, in particular.

  • Lander 2016 (preprint) - Understanding neutron-star evolution from magnetar flares - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova...

Importance of Supernovae in the Enrichment of Planetary Systems

Figure: Called the Veil Nebula, the debris is one of the best-known supernova remnants, deriving its name from its delicate, draped filamentary structures. This view is a mosaic of six Hubble pictures of a small area roughly two light-years across, covering only a tiny fraction of the nebula’s vast structure. Credit: NASA/ESA/Hubble Heritage Team The presence and abundance of short lived radioisotopes in chondritic meteorites implies that the Sun formed in the vicinity of one or more massive stars that exploded as supernovae (SNe).