Skip to main content

Understanding neutron-star evolution from magnetar flares


Image: A rupture in the crust of a highly magnetized neutron star, shown here in an artist's rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star's surface twists and vibrates, providing new insights into what lies beneath. Credits: NASA's Goddard Space Flight Center/S. Wiessinger

Some of the most intriguing neutron stars are the magnetars: highly magnetised objects whose surface fields are inferred to be in excess of 1014 G in some cases, and whose interior fields may reach 1016 G.

In contrast with many older, more predictable neutron stars, magnetars are volatile, alternating between quiescent states and highly energetic bursts and flares. Their most spectacular events are the giant flares, releasing over ~ 1045 erg of energy in a very brief flash and decaying X-ray tail.

The giant flares of magnetars are believed to be powered by colossal magnetic energy reservoirs.

In a recent paper (Lander 2016) the author sketches an evolutionary picture in which the process of giant flare energy release, from a twisted corona, begins with internal field evolution.

Given the ages of magnetars and the energy of their flares, he suggests that their evolution is driven by a novel evolutionary mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay.

He estimates the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. Field evolution in the superconducting core may also play a role in magnetar field evolution, depending on the star's spindown history and how rotational vortices and magnetic fluxtubes interact.

The author suggests that plastic flow will dominate NS crustal field evolution for B > 1015 G, compete with Hall drift in the outer crust for B ~ 1014 G, and probably be irrelevant for B < 1013 G. This suggests that it plays a key role for young magnetars, in particular.

  • Lander 2016 (preprint) - Understanding neutron-star evolution from magnetar flares - (arXiv)

Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...