Skip to main content

Understanding neutron-star evolution from magnetar flares


Image: A rupture in the crust of a highly magnetized neutron star, shown here in an artist's rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star's surface twists and vibrates, providing new insights into what lies beneath. Credits: NASA's Goddard Space Flight Center/S. Wiessinger

Some of the most intriguing neutron stars are the magnetars: highly magnetised objects whose surface fields are inferred to be in excess of 1014 G in some cases, and whose interior fields may reach 1016 G.

In contrast with many older, more predictable neutron stars, magnetars are volatile, alternating between quiescent states and highly energetic bursts and flares. Their most spectacular events are the giant flares, releasing over ~ 1045 erg of energy in a very brief flash and decaying X-ray tail.

The giant flares of magnetars are believed to be powered by colossal magnetic energy reservoirs.

In a recent paper (Lander 2016) the author sketches an evolutionary picture in which the process of giant flare energy release, from a twisted corona, begins with internal field evolution.

Given the ages of magnetars and the energy of their flares, he suggests that their evolution is driven by a novel evolutionary mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay.

He estimates the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. Field evolution in the superconducting core may also play a role in magnetar field evolution, depending on the star's spindown history and how rotational vortices and magnetic fluxtubes interact.

The author suggests that plastic flow will dominate NS crustal field evolution for B > 1015 G, compete with Hall drift in the outer crust for B ~ 1014 G, and probably be irrelevant for B < 1013 G. This suggests that it plays a key role for young magnetars, in particular.

  • Lander 2016 (preprint) - Understanding neutron-star evolution from magnetar flares - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

RADIATIVE CLEARING OF PROTOPLANETARY DISCS

Image: protoplanetary disc surrounding the young star HL Tauri, a very young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO) T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.