Skip to main content

The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

Image: This annotated artist’s impression shows the Milky Way galaxy. The blue halo of material surrounding the galaxy indicates the expected distribution of the mysterious dark matter. Credit: ESO/L. Calçada

In a recent paper (Huang et al. 2016) the rotation curve (RC) of the Milky Way out to ~100kpc has been constructed using ~16,000 primary red clump giants (PRCGs) in the outer disk selected from the LSS-GAC and the SDSS-III/APOGEE survey, combined with ~5700 halo K giants (HKGs) selected from the SDSS/SEGUE survey.


The authors determine a circular velocity at the solar position, Vc(R0)=240±6 km/s and an azimuthal peculiar speed of the Sun, V=12.1±7.6 km/s, both in good agreement with the previous determinations.

The newly constructed RC has a generally flat value of 240 km/s within a Galactocentric distance r of 25 kpc and then decreases steadily to 150 km/s at r~100 kpc.

On top of this overall trend, the RC exhibits two prominent localized dips, one at r~11 kpc and another at r~19 kpc. The dips could be explained by assuming the existence of two massive (dark) matter rings in the Galactic plane.

From the newly constructed RC, combined with other data, the authors have built a parametrized mass model for the Galaxy, yielding a virial mass of the Milky Way's dark matter halo of ~0.90×1012 M and a total disc mass of ~ 4.32×1010M.

The model yields a local dark matter density, ρ⊙,dm ~ 0.32 GeV cm−3, which again agrees well with the previous determinations.

  • Huang et al. 2016 - The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution - (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is