Skip to main content

Sub-photospheric shocks in relativistic explosions

Image: In the most common type of gamma-ray burst, illustrated here, a dying massive star forms a black hole (left), which drives a particle jet into space. Light across the spectrum arises from hot gas near the black hole, collisions within the jet, and from the jet's interaction with its surroundings. Credit: NASA's Goddard Space Flight Center


Astrophysical explosions and jets generate shock waves, which produce radiation. Their radiative properties are determined by the dissipation mechanism that sustains the velocity jump in the shock and by its ability to generate nonthermal particles.

A recent paper (Beloborodov 2016) examines the mechanism of internal shocks in gamma-ray bursts (GRBs) that occur before the GRB jets become transparent to radiation. The approach and some of the results may also be of interest for other explosions, e.g. in novae or supernovae.

Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation from the explosion. Shocks develop from internal compressive waves and can be of different types depending on the composition of the flow:
  1. Shocks in 'photon gas' with small plasma inertial mass have a unique structure determined by the 'force-free' condition -- zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses formation of collisionless shocks mediated by collective electromagnetic fields. 
  2. Strong collisionless subshocks develop in the opaque flow if it is sufficiently magnetized. The author evaluates the critical magnetization for this to happen. The collisionless subshock is embedded in a thicker radiation-mediated shock structure.
  3. Shocks in outflows carrying a free neutron component involve dissipation through nuclear collisions. At large optical depths, the shock thickness is comparable to the neutron free path, with an embedded radiation-mediated or collisionless subshock.
The author finds that sub-photospheric shocks are capable of generating high-energy particles and boosting the photon number carried by the outflow, and that the shock type changes as the outflow expands toward its photosphere. Strong e± pair creation occurs as the shock wave approaches the photosphere. Then the e±-dressed shock carries the photosphere with it up to two decades in radius, producing a strong observed pulse of nonthermal photospheric radiation.

  • Beloborodov 2016 (preprint) - Sub-photospheric shocks in relativistic explosions - (arXiv)

Comments

Popular posts from this blog

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...

Contributions to Cosmic Reionization from Dark Matter Annihilation and Decay

Image: A Schematic Outline of the Cosmic History - Credit: NASA/WMAP Science Team The epoch of reionisation and the emergence of the universe from the cosmic dark ages is a subject of intense study in modern cosmology.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...