Skip to main content

ORIGIN OF RADIO EMISSION IN RADIO-QUIET QUASARS

Image Credit: NASA/Goddard Space Flight Center

Radio emission of radio-quiet quasars may be due to stars formation in the quasar host galaxy, to a jet launched by the supermassive black hole, or to relativistic particles accelerated in a wide-angle radiatively-driven outflow.


Recently some authors (Zakamska et al 2016) examine whether radio emission from radio-quiet quasars is a byproduct of stair formation in their hosts. They find that even the most generously computed star formation rates are insufficient to explain the observed radio emission, by about an order of magnitude. They cannot distinguish between radio emission due to compact weak jets and radio emission due to wide angle winds. The problem of distinguishing radio emission from compact jets from radio emission as a bi-product of radiatively driven has proven espexially difficult because the two mechanisms are similar in terms of energetics.


Read more>>
http://arxiv.org/pdf/1511.00013v2.pdf
http://mnras.oxfordjournals.org/content/455/4/4191.abstract

Comments

Popular posts from this blog

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A BINARY ORIGIN FOR A CENTRAL COMPACT OBJECT (CCO)?

Figure: False-Colour X-ray and infrared emission image from the core of the infrared shell. The RGB colours correspond to Chandra X-ray 0.2-10 keV (blue), IRAC infrared 8 μm (green), and HPACS 70 μm (red) data. The intensity scale is logarithmic for all channels. Overlaid are equal brightness levels from the MIPS 24 μm band. Note that around the CCO the infrared emission is suppressed in the 70 μm band and enhanced in the 24 μm band suggesting higher dust temperature. Credit: Doroshenko et al 2016 Central compact objects (CCOs) are thought to be young isolated neutron stars that were born during the preceding core-collapse supernova explosion.