Skip to main content

ORIGIN OF RADIO EMISSION IN RADIO-QUIET QUASARS

Image Credit: NASA/Goddard Space Flight Center

Radio emission of radio-quiet quasars may be due to stars formation in the quasar host galaxy, to a jet launched by the supermassive black hole, or to relativistic particles accelerated in a wide-angle radiatively-driven outflow.


Recently some authors (Zakamska et al 2016) examine whether radio emission from radio-quiet quasars is a byproduct of stair formation in their hosts. They find that even the most generously computed star formation rates are insufficient to explain the observed radio emission, by about an order of magnitude. They cannot distinguish between radio emission due to compact weak jets and radio emission due to wide angle winds. The problem of distinguishing radio emission from compact jets from radio emission as a bi-product of radiatively driven has proven espexially difficult because the two mechanisms are similar in terms of energetics.


Read more>>
http://arxiv.org/pdf/1511.00013v2.pdf
http://mnras.oxfordjournals.org/content/455/4/4191.abstract

Comments

Popular posts from this blog

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. Such massive planets were not thought to exist ar...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ) The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.