Skip to main content

GAMMA-RAY EMISSION FROM THE SNR HB3

Image: At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. These oxygen-rich supernovas are of great interest to astronomers because they are one of the primary sources of the heavy elements (that is, everything other than hydrogen and helium) necessary to form planets and people. The X-ray image from Chandra shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen (yellow and orange), other elements such as magnesium (green) and silicon and sulfur (blue) that were forged in the star before it exploded. Credit: NASA/CXC/SAO

The processes of particles acceleration to very high energies from the supernova shock region and diffusion in the interstellar medium of such particles has not been well understood so far. Gamma-ray observations in the GeV regime are a powerful probe of these mechanisms


In a recent paper (Katagiri et al. 2016, ApJ) the authors report the discovery of extended gamma-ray emission spatially correlated with the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 H II complex adjacent to the southeast of the remnant. W3 is a region rich of CO clouds.



Supernova remnant HB 3 (www.cfa.harvard.edu)

The authors find that the decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission from HB3. The cosmic rays accelerated in HB 3 irradiate the CO clouds and generate the emission from W3 region.




Katagiri et al. 2016, ApJ - Fermi LAT Discovery of Extended Gamma-Ray Emissions in the Vicinity of the HB3 Supernova Remnant (arXiv)



Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW MACRONOVA'S MODEL

Image: The sequence illustrates the macronova model for the formation of a short-duration gamma-ray burst. 1. A pair of neutron stars in a binary system spiral together. 2. In the final milliseconds, as the two objects merge, they kick out highly radioactive material. This material heats up and expands, emitting a burst of light called a macronova. 3. The fading fireball blocks visible light but radiates in infrared light. 4. A remnant disk of debris surrounds the merged object, which may have collapsed to form a black hole Credit: NASA, ESA, and A. Feild (STScI) A macronova (also called a 'kilonova' or an 'r-process supernova' ) occurs when two neutron stars or a neutron star and a black hole merge. It is a near-infrared/optical transient powered by the radioactive decay of heavy elements synthesized in the ejecta (~10 -4 -10 -1 M sun with velocities ~ 0.1-0.3c) of a compact binary merger. Strong electromagnetic radiation is emitted due to the decay of h

Antares overlooking an Auxiliary Telescope

Credit: ESO/B. Tafreshi Brilliant blue stars litter the southern sky and the  galactic bulge  of our home galaxy, the Milky Way, hangs serenely above the horizon in this spectacular shot of ESO’s Paranal Observatory. This image was taken atop Cerro Paranal in Chile, home to ESO’s  Very Large Telescope  (VLT). In the foreground, the open dome of one of the four 1.8-metre  Auxiliary Telescopes  can be seen. The four Auxiliary Telescopes can be utilised together, to form the  Very Large Telescope Interferometer  (VLTI). The plane of the Milky Way is dotted with bright regions of hot gas. The very bright star towards the upper left corner of the frame is  Antares  — the brightest star in  Scorpius  and the fifteenth brightest star in the night sky. Text Credit:  ESO Resources Antares overlooking an Auxiliary Telescope Next Post Small Asteroid or Comet 'Visits' from Beyond the Solar System