Skip to main content

MILLISECOND PULSAR ORIGIN OF THE GALACTIC CENTER GEV EXCESS

Image: The Milky Way. Credit: Serge Brunier

Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the inner Galaxy, at energies around a few GeV. This excess attracted great attention, because it has properties typical for a dark matter annihilation signal.


Proposed diffuse emission mechanisms, like leptonic or hadronic outbursts or cosmic-ray injection in the central molecular zone, potentially explain part of the excess emission. However, it is challenging to explain all of the above aspects of the GCE with these mechanisms alone.

The most plausible astrophysical interpretation for the Galactic center eccess (GCE) is the combined emission from a large number of unresolved millisecond pulsars (MSPs) in the Galactic bulge region. Recently, it was shown that the spatial distribution of MSPs that were spilled out of disrupted globular clusters can explain the morphology of the GCE.


Image: SNR of the wavelet transform
of γ-rays with energies in the range 1-4 GeV.
Credit: Bartels et al. 2016
In a rencent paper (Bartels et al. 2016), using almost seven years of Fermi-LAT data, the authors detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10,8 σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission.

The authors argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation.


The paper (Bartels et. al 2016) is available online and is published in the PhRvL >>
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.051102
http://arxiv.org/pdf/1506.05104v2.pdf

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.

Forest of Molecular Signals in Star Forming Galaxy

Spiral Galaxy NGC 253. Credit: ESO Astronomers found a rich molecular reservoir in the heart of an active star-forming galaxy with the Atacama Large Millimeter/submillimeter Array (ALMA). Among eight clouds identified at the center of the galaxy NGC 253, one exhibits very complex chemical composition, while in the other clouds many signals are missing. This chemical richness and diversity shed light on the nature of the baby boom galaxy. Ryo Ando, a graduate student of the University of Tokyo, and his colleagues observed the galaxy NGC 253 and for the first time, they resolved the locations of star formation in this galaxy down to the scale of a molecular cloud, which is a star formation site with a size of about 30 light-years. As a result, they identified eight massive, dusty clouds aligned along the center of the galaxy. “With its unprecedented resolution and sensitivity, ALMA showed us the detailed structure of the clouds,” said Ando, the lead author of the research paper