Skip to main content

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin


The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.


The Local Group, which contains the Milky Way and Andromeda galaxies, is located on the outskirts of the Local Supercluster in a small filament extending from the Fornax Cluster to the Virgo Cluster.

The vast majority of the luminous galaxies are concentrated in a small number of clouds. This distribution indicates that most of the volume of the supergalactic plane is a great void.

The Virgo Supercluster is contained in turn in the Laniakea Supercluster, which encompasses 100,000 galaxies stretched out over 160 megaparsecs.

Image: Laniakea Supercluster. The blue dot indicates the location of the Milky Way. The rainbow colour scale indicates density (with high density regions in green and red, and low density in blue); velocity flow streams are indicated by the blue and white lines; and the orange band indicates the border of the Laniakea supercluster. Credit: Nature

Superclusters are some of the universe's largest structures, and have boundaries that are difficult to define, especially from the inside. Within a given supercluster, most galaxy motions will be directed inward, toward the center of mass.

In the case of Laniakea, this gravitational focal point is called the Great Attractor, and influences the motions of the Local Group of galaxies (where the Milky Way galaxy resides) and all others throughout our supercluster.

Image: Great Attractor. Credit: Nature


The neighbouring superclusters to Laniakea are the Shapley Supercluster, Hercules Supercluster, Coma Supercluster, Perseus-Pisces Supercluster.





Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ABOUT THE FORMATION OF THE COLD CLASSICAL KUIPER BELT

Image: The Kuiper Belt. Credit: NASA . The Kuiper belt is a circumstellar disc in the Solar System beyond the planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt (the circumstellar disc located roughly between the orbits of the planets Mars and Jupiter), but it is far larger-20 times as wide and 20 to 200 times as massive.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.