Skip to main content

DOUBLE NEUTRON STAR SYSTEMS

Image: Artistic representation of Doulbe Neutron Stars.
Credit: NASA/Goddard Space Flight Center

Double Neutron Stars (DNS) have to survive two supernovae and still remain bound. For this reason these systems are a unique and rare population of neutron stars and sets strong limits on the nature of the second collapse. Moreover, DNS emit gravitational radiation and consequently their orbit decays and they merge. This make DNS systems prime candidates for detection of gravitational radiation.


The image shows the NS merger and the gravity waves
it produce. Credit: NASA/Goddard Space Flight Center

A major question is how do the two neutron stars remain bound after the second supernova. If more than half of the mass of the system is lost the system will become unbound, unless the supernova results also in a significant kick velocity to the newborn neutron star. Assuming that the system was on a circular orbit before the second collapse and given the orbital parameters of the DNS system one can estimate the mass ejection and the kick velocity during the second collapse.

In a recent paper (Beniamini & Piras 2016), the authors show that there is strong evidence for two distinct types of supernovae in these systems, where the second collapse in the majority of the observed systems involved small mass ejection (ΔM≤0.5 M - solar masses) and a corresponding low-kick velocity  (vk≤ 30km/s). This formation scenario is  compatible, for example, with an electron capture supernova (see appendix below).
Only a minority of the systems have formed via the standard SN scenario involving larger mass ejection of ~2.2 M and kick velocities of up to 400 km/s. The authors predict that most of these systems reside close to the galactic disc. This implies that more NS-NS mergers occur close to the galactic plane.

The paper (Beniamini & Piras 2016) is available online and is published in the MNRAS >>
http://arxiv.org/pdf/1510.03111v2.pdf
http://mnras.oxfordjournals.org/content/456/4/4089.abstract

APPENDIX - Electron capture supernova


A massive star with a main-sequence mass M>8 M ends up as a core-collapse supernova. Core collapse is inaugurated by electron capture for a star with an O+Ne+Mg core (M≤10 M) or Fe photodisintegration for a star with an Fe core (M > 10M ).
The fate of the less-massive star with the O+Ne+Mg core is different from that of the star with an Fe core. The O+Ne+Mg core is supported  by electron  degenerate pressure. The mass and density of the O+Ne+Mg core increase through phases of shell burning of He and H. As the O+Ne+Mg core grows, an envelope undergoes mass loss to reduce the H mass and He dredge-up to enhance He abundance. When the central density exceeds a critical value (4 × 10¹² kg m-3), electrons begin to be captured by magnesium, the degenerate pressure decreases, and thus the O+Ne+Mg core collapses gravitationally. Ensuing core bounce and neutrino heating can eject the envelope and part of the O+Ne+Mg core. This  explosion is called an electron-capture supernova.

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW MACRONOVA'S MODEL

Image: The sequence illustrates the macronova model for the formation of a short-duration gamma-ray burst. 1. A pair of neutron stars in a binary system spiral together. 2. In the final milliseconds, as the two objects merge, they kick out highly radioactive material. This material heats up and expands, emitting a burst of light called a macronova. 3. The fading fireball blocks visible light but radiates in infrared light. 4. A remnant disk of debris surrounds the merged object, which may have collapsed to form a black hole Credit: NASA, ESA, and A. Feild (STScI) A macronova (also called a 'kilonova' or an 'r-process supernova' ) occurs when two neutron stars or a neutron star and a black hole merge. It is a near-infrared/optical transient powered by the radioactive decay of heavy elements synthesized in the ejecta (~10 -4 -10 -1 M sun with velocities ~ 0.1-0.3c) of a compact binary merger. Strong electromagnetic radiation is emitted due to the decay of h

Antares overlooking an Auxiliary Telescope

Credit: ESO/B. Tafreshi Brilliant blue stars litter the southern sky and the  galactic bulge  of our home galaxy, the Milky Way, hangs serenely above the horizon in this spectacular shot of ESO’s Paranal Observatory. This image was taken atop Cerro Paranal in Chile, home to ESO’s  Very Large Telescope  (VLT). In the foreground, the open dome of one of the four 1.8-metre  Auxiliary Telescopes  can be seen. The four Auxiliary Telescopes can be utilised together, to form the  Very Large Telescope Interferometer  (VLTI). The plane of the Milky Way is dotted with bright regions of hot gas. The very bright star towards the upper left corner of the frame is  Antares  — the brightest star in  Scorpius  and the fifteenth brightest star in the night sky. Text Credit:  ESO Resources Antares overlooking an Auxiliary Telescope Next Post Small Asteroid or Comet 'Visits' from Beyond the Solar System