Image: Spiral galaxy NGC 253 Credit: Robert Gendler/Jim Mistin |
The modern paradigm of cold dark matter with a cosmological constant (ΛCDM) predicts that galaxies form hierarchically - growing through the gradual merging of many smaller galaxies.
A giant spiral like our Milky Way is expected to undergo a succession of dwarf galaxy accretion events which have different observational signatures, depending on their occurrence in the past, present, or future. Ancient accretion events can be detected through careful sifting of the chemodynamical phase-space of halo stars. Ongoing accretion is implied by the presence of satellite galaxies within the halo, and imminent accretion is marked by the existence of field dwarfs near to their future hosts.
The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ~ 50 kpc from the main galaxy. Their observations support the hierarchical paradigm wherein massive galaxies continously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics.
The paper (Romanowsky, Martinez-Delgago et. al 2016) is available online and is published in the MNRAS. >>
http://mnrasl.oxfordjournals.org/content/457/1/L103.full.pdf
http://arxiv.org/pdf/1512.03815v2.pdf
Comments
Post a Comment