Skip to main content

A TIDALLY DISRUPTING DWARF SPHEROIDAL AROUND THE GALAXY NGC 253

Image: Spiral galaxy NGC 253  Credit: Robert Gendler/Jim Mistin

The modern paradigm of cold dark matter with a cosmological constant (ΛCDM) predicts that galaxies form hierarchically - growing through the gradual merging of many smaller galaxies.


A giant spiral like our Milky Way is expected to undergo a succession of dwarf galaxy accretion events which have different observational signatures, depending on their occurrence in the past, present, or future. Ancient accretion events can be detected through careful sifting of the chemodynamical phase-space of halo stars. Ongoing accretion is implied by the presence of satellite galaxies within the halo, and imminent accretion is marked by the existence of field dwarfs near to their future hosts.

Left: Amateur images of NGC 253 and its satellite NGC 253-dw2.
The field of view is of ~ 67 x 60 kpc. North is up and East is left.
The zoom-in on NGC 253-dw2 covers ~ 8 x 7 kpc.
Right: Subaru/Suprime-Cam image.
Credit: Romanowsky, Martinez-Delgago et. al 2016
Some researchers (Romanowsky, Martinez-Delgago et. al 2016) report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. it is noteworthy that the dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars.

The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ~ 50 kpc from the main galaxy. Their observations support the hierarchical paradigm wherein massive galaxies continously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics.

The paper (Romanowsky, Martinez-Delgago et. al 2016) is available online and is published in the MNRAS. >>
http://mnrasl.oxfordjournals.org/content/457/1/L103.full.pdf
http://arxiv.org/pdf/1512.03815v2.pdf

Comments

Popular posts from this blog

Astrophysics collection (March 11, 2016)

Latest astrophysics news Rotation curves of galaxies as a test of MOND? Galaxies are rotating with such speed that the gravity generated by their observable matter could not possibly hold them together. In a recent paper ( Haghi et al. 2016 ) the authors test the Modified Newtonian Dynamics (MOND).    Read>> A binary origin for a central compact object (CCO)? Doroshenko et al. 2016 investigate the possible binary origin of the CCO XMMUJ173203.3-344518 .   Read>> Rapidly rotating pulsars as possible sources of fast radio bursts (FRB) In a recent paper ( Lyutikov et al. 2016 ) the authors discuss possible association of fast radio bursts (FRBs) with supergiant pulses emitted by young pulsars.   Read>> Supernovae from WD-WD direct collisions In recent years it was suggested that WD-WD direct collisions (probably extremely rare and occurring only in dense stellar clusters) provide an additional channel for supernova...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

A BINARY ORIGIN FOR A CENTRAL COMPACT OBJECT (CCO)?

Figure: False-Colour X-ray and infrared emission image from the core of the infrared shell. The RGB colours correspond to Chandra X-ray 0.2-10 keV (blue), IRAC infrared 8 μm (green), and HPACS 70 μm (red) data. The intensity scale is logarithmic for all channels. Overlaid are equal brightness levels from the MIPS 24 μm band. Note that around the CCO the infrared emission is suppressed in the 70 μm band and enhanced in the 24 μm band suggesting higher dust temperature. Credit: Doroshenko et al 2016 Central compact objects (CCOs) are thought to be young isolated neutron stars that were born during the preceding core-collapse supernova explosion.