Skip to main content

A TIDALLY DISRUPTING DWARF SPHEROIDAL AROUND THE GALAXY NGC 253

Image: Spiral galaxy NGC 253  Credit: Robert Gendler/Jim Mistin

The modern paradigm of cold dark matter with a cosmological constant (ΛCDM) predicts that galaxies form hierarchically - growing through the gradual merging of many smaller galaxies.


A giant spiral like our Milky Way is expected to undergo a succession of dwarf galaxy accretion events which have different observational signatures, depending on their occurrence in the past, present, or future. Ancient accretion events can be detected through careful sifting of the chemodynamical phase-space of halo stars. Ongoing accretion is implied by the presence of satellite galaxies within the halo, and imminent accretion is marked by the existence of field dwarfs near to their future hosts.

Left: Amateur images of NGC 253 and its satellite NGC 253-dw2.
The field of view is of ~ 67 x 60 kpc. North is up and East is left.
The zoom-in on NGC 253-dw2 covers ~ 8 x 7 kpc.
Right: Subaru/Suprime-Cam image.
Credit: Romanowsky, Martinez-Delgago et. al 2016
Some researchers (Romanowsky, Martinez-Delgago et. al 2016) report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. it is noteworthy that the dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars.

The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ~ 50 kpc from the main galaxy. Their observations support the hierarchical paradigm wherein massive galaxies continously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics.

The paper (Romanowsky, Martinez-Delgago et. al 2016) is available online and is published in the MNRAS. >>
http://mnrasl.oxfordjournals.org/content/457/1/L103.full.pdf
http://arxiv.org/pdf/1512.03815v2.pdf

Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...