T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence. Their central temperatures are too low for hydrogen fusion. Instead, they are powered by gravitational energy released as the stars contract, while moving towards the main sequence, which they reach after about 100 million years. Roughly half of T Tauri stars have circumstellar disks, which in this case are called protoplanetary discs because they are probably the progenitors of planetary systems like the Solar System.
Understanding the mechanism by which protoplanetary discs are dispersed is important, in particular, because it constrains the timescale within which planets can form. It is now generally thought that disc dispersal happens from the inside out. Such discs with inner holes have thus been labelled 'transition discs'. Multiple explanations for the appearance of inner holes have been proposed; however the most promising are either clearing by a planet (or planets) or photoevaporation. Once photoevaporation halts the accretion on to the star, a few Jupiter masses of gas should be left at radii beyond 10 AU (astronomical unit - 1AU=150 million kilometers ~ the distance from Earth to the Sun) and that this should survive for of order half a Myr thereafter before ultimate photoevaporation. Once accretion ceases, the reservoir of gas at large radii must either be small or else then rapidly cleared by an unidentified mechanism.
The lack of observed transition discs with inner gas holes of radii greater than ~50AU implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. In a recent paper (Haworth et al. 2016) published in MNRAS, the authors investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, they study the so-called 'thermal sweeping' mechanism which results in rapid clearing of the disc. Thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas.
Image: Artistic illustration of a protoplanetary disk. Credit: ALMA (ESO/NAOJ/NRAO), Mark Garlick |
They found that the radiative clearing happens less readily than previously believed and that the X–ray driven thermal sweeping does not appear to be the solution to the lack of non-accreting transition discs with large holes.
They conclude that it is possible that far-ultraviolet heating could play an important role in the final clearing of protoplanetary discs and can clear gas from the outer disc sufficiently quickly to explain the non-detection of cold gas around weak line T Tauri stars.
The paper (Haworth et al. 2016) is available online>>
http://mnras.oxfordjournals.org/content/457/2/1905.short
http://arxiv.org/pdf/1512.02234v2.pdf
More images and information on HL Tauri are available here>>
http://www.almaobservatory.org/en/press-room/press-releases/771-revolutionary-alma-image-reveals-planetary-genesis
Comments
Post a Comment