Skip to main content

TESTING THE SPEED OF GRAVITATIONAL WAVES OVER COSMOLOGICAL DISTANCES

Image: Merging black holes ripple space and time in this artist's concept. Credit: Swinburne Astronomy Productions

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) observed a transient gravitational-wave signal from a black hole-black hole binary (BHBH) inspiral.


The Fermi gamma ray burst monitor revealed the presence of a possible electromagnetic counterpart (Connaughton et al. 2016): a weak transient source above 50 keV, 0.4 s after the GW event was detected with a false alarm probability of 0.0022. The spatial location of both events are poorly determined but mutually consistent.

If the EM and GW signals are related to the same transient phenomenon this opens up a new physical window with which to test the relative speeds of light and gravitational waves.

Several of the alternative theories of gravity invoked to explain the accelerated expansion of the Universe predict cGW ≠ clight. In a recent paper (Collett & Bacon 2016) the authors assume that the EM and GW are emitted at the same instant and they obtain a constraint on the ratio of the speeds of light and gravitational waves at the level of 10−17.

The assumption that the electromagnetic and gravitational wave emissions are emitted at the same time is a strong one, so they suggest a method that does not make such an assumption using a strongly lensed GW event and EM counterpart. They show that a single strongly lensed GW event would produce robust constraints at the 10−7 level, if a high energy EM counterpart is observed within the field-of-view of an observing gamma ray burst monitor.


  • Collett & Bacon 2016 - Testing the speed of gravitational waves over cosmological distances with strong gravitational lensing (arXiv)
  • Connaughton et al. 2016 - Fermi GBM Observations of LIGO Gravitational Wave event GW150914 (arXiv)

Comments

Popular posts from this blog

A SIGNIFICATIVE FRACTION OF BARYONS RESIDE IN THE FILAMENTS OF THE COSMIC WEB

(Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder) Observations of the cosmic microwave background indicate that baryons (protons, neutrons, etc., - the ordinary matter just to understand) occupies only 5% of the total energy content of the Universe (95% is dark matter and dark energy). However in the local universe approximately half of this "ordinary" matter it has never been observed.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

A Sapphire Super-Earth

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, these super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets. These objects are completely different from the majority of Earth-like planets. They have 10 to 20 percent lower densities than Earth. Researchers looked at different scenarios to explain the observed densities. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this ...