Skip to main content

TESTING THE SPEED OF GRAVITATIONAL WAVES OVER COSMOLOGICAL DISTANCES

Image: Merging black holes ripple space and time in this artist's concept. Credit: Swinburne Astronomy Productions

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) observed a transient gravitational-wave signal from a black hole-black hole binary (BHBH) inspiral.


The Fermi gamma ray burst monitor revealed the presence of a possible electromagnetic counterpart (Connaughton et al. 2016): a weak transient source above 50 keV, 0.4 s after the GW event was detected with a false alarm probability of 0.0022. The spatial location of both events are poorly determined but mutually consistent.

If the EM and GW signals are related to the same transient phenomenon this opens up a new physical window with which to test the relative speeds of light and gravitational waves.

Several of the alternative theories of gravity invoked to explain the accelerated expansion of the Universe predict cGW ≠ clight. In a recent paper (Collett & Bacon 2016) the authors assume that the EM and GW are emitted at the same instant and they obtain a constraint on the ratio of the speeds of light and gravitational waves at the level of 10−17.

The assumption that the electromagnetic and gravitational wave emissions are emitted at the same time is a strong one, so they suggest a method that does not make such an assumption using a strongly lensed GW event and EM counterpart. They show that a single strongly lensed GW event would produce robust constraints at the 10−7 level, if a high energy EM counterpart is observed within the field-of-view of an observing gamma ray burst monitor.


  • Collett & Bacon 2016 - Testing the speed of gravitational waves over cosmological distances with strong gravitational lensing (arXiv)
  • Connaughton et al. 2016 - Fermi GBM Observations of LIGO Gravitational Wave event GW150914 (arXiv)

Comments

Popular posts from this blog

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...