Skip to main content

REMAIN SOME POSSIBILITIES FOR ALTERNATIVE THEORIES OF GRAVITY?

Image: Numerical simulations of the gravitational waves emitted by the inspiral and merger of two black holes. The colored contours around each black hole represent the amplitude of the gravitational radiation; the blue lines represent the orbits of the black holes and the green arrows represent their spins. Credit: C. Henze/NASA Ames Research Center

The observation of gravitational-wave signal by LIGO and VIRGO, corresponding to the inspiral and merger of two black holes, are consistent with the Einstein theory of gravity with high accuracy limited mainly by the statistical error.


In a recent paper (Konoplya & Zhidenko, 2016) the authors suggest that there is a number of alternative theories of gravity which produce the same black-hole behavior at far distances from their surfaces, but lead to qualitatively different features near the event horizon.

LIGO and Virgo data provide the angular momentum and mass of the final black hole with rather large allowance of tens of percents. The authors show that this indeterminacy in the range of the black-hole parameters allows for some not negligible deformations of the Kerr spacetime leading to the same frequencies of black-hole ringing. This means that at the current precision of the experiment there remain some possibilities for alternative theories of gravity.

Image: Simulation of a black hole merger. Credit: NASA's Goddard Space Flight Center/P. Cowperthwaite, Univ. of Maryland

Thus, they claim that there might exist a strongly deformed Kerr-like black hole, corresponding to an alternative theory of gravity, such that its behavior in the post-Newtonian regime is quite similar to Kerr black hole, while its near-horizon behavior is different.

The authors conclude that in order to disprove the above proposal, one needs to determine black-hole parameters with high accuracy. In the future this could be done either by improving the accuracy of detection of the gravitational-wave profile or with complementary observations of black holes in the electromagnetic spectrum, which could potentially give us an image of a black hole.

  • Konoplya & Zhidenko 2016 - Detection of gravitational waves from black holes: Is there a window for alternative theories? (arXiv)
  • Simulation of a black hole merger - (NASA)



Comments

Popular posts from this blog

A METHOD TO TEST THE EXISTENCE OF REGULAR BLACK HOLES

Illustration of a black hole. Image Credit & Copyright: Alain Riazuelo The existence of the singularity is an intrinsic problem of the General Relativity (GR). At the fundamentally level, the resolution of the problem of the singularity lies with the expectation that under situations where quantum effects become strong, the behavior of gravity could possibly greatly deviate from that predicted by the classical theory of GR. Regular black hole solution are proposed with the same spacetime geometry outside the horizon as the traditional black hole, but bears no singularity inside. Whether or not black hole singularities should exist, they would be covered by the black hole horizon. The black hole horizon serves as an information curtain hindering outside observers from directly observing the interior structure of the black hole, and determining that whether or not the black hole singularity does really exist. A method is needed to check the correctness of the new constructions ...

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).

CONTAMINATION BY SUPERNOVAE IN GLOBULAR CLUSTERS

Credit: ALMA (ESO/NAOJ/NRAO)/Alexandra Angelich (NRAO/AUI/NSF) Only a small amount of the supernovae products remains trapped within globular clusters and this "catch" only occurs in the most massive cases (mass cluster ≥ 10^6 solar masses).