Skip to main content

REMAIN SOME POSSIBILITIES FOR ALTERNATIVE THEORIES OF GRAVITY?

Image: Numerical simulations of the gravitational waves emitted by the inspiral and merger of two black holes. The colored contours around each black hole represent the amplitude of the gravitational radiation; the blue lines represent the orbits of the black holes and the green arrows represent their spins. Credit: C. Henze/NASA Ames Research Center

The observation of gravitational-wave signal by LIGO and VIRGO, corresponding to the inspiral and merger of two black holes, are consistent with the Einstein theory of gravity with high accuracy limited mainly by the statistical error.


In a recent paper (Konoplya & Zhidenko, 2016) the authors suggest that there is a number of alternative theories of gravity which produce the same black-hole behavior at far distances from their surfaces, but lead to qualitatively different features near the event horizon.

LIGO and Virgo data provide the angular momentum and mass of the final black hole with rather large allowance of tens of percents. The authors show that this indeterminacy in the range of the black-hole parameters allows for some not negligible deformations of the Kerr spacetime leading to the same frequencies of black-hole ringing. This means that at the current precision of the experiment there remain some possibilities for alternative theories of gravity.

Image: Simulation of a black hole merger. Credit: NASA's Goddard Space Flight Center/P. Cowperthwaite, Univ. of Maryland

Thus, they claim that there might exist a strongly deformed Kerr-like black hole, corresponding to an alternative theory of gravity, such that its behavior in the post-Newtonian regime is quite similar to Kerr black hole, while its near-horizon behavior is different.

The authors conclude that in order to disprove the above proposal, one needs to determine black-hole parameters with high accuracy. In the future this could be done either by improving the accuracy of detection of the gravitational-wave profile or with complementary observations of black holes in the electromagnetic spectrum, which could potentially give us an image of a black hole.

  • Konoplya & Zhidenko 2016 - Detection of gravitational waves from black holes: Is there a window for alternative theories? (arXiv)
  • Simulation of a black hole merger - (NASA)



Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

NEW WATER MASER IN S0 GALAXY IRAS 15480-0344

Image: Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. This is a composite of images obtained with three instruments, operating at very different wavelengths. The 870-micron submillimetre data, from LABOCA on APEX, are shown in orange. X-ray data from the Chandra X-ray Observatory are shown in blue. Visible light data from the Wide Field Imager (WFI) on the MPG/ESO 2.2 m telescope located at La Silla, Chile, show the background stars and the galaxy’s characteristic dust lane in close to "true colour". Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray) A maser, an acronym for 'microwave amplification by stimulated emission of radiation', is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The maser was the forerunner of the laser: they work by the same principle. The difference is

THE HITCHCHIKER'S GUIDE TO THE LOCAL SUPERCLUSTER

Image: Virgo Supercluster. Credit: Andrew Z. Colvin The Virgo Supercluster is a region with a diameter of 33 megaparsecs (~1000 times larger the Milky Way's diameter) containing at least 100 galaxy groups and clusters.