Skip to main content

A NEW EVOLUTIVE SCENARIO FOR THE JUPITER'S CORE?

Image: This artist's conception shows a Jupiter-sized planet forming from a disk of dust and gas surrounding a young, massive star. - NASA


Astronomers have discovered nearly 500 planetary systems each with multiple planets, and typically these systems include a few planets with masses several times greater than Earth's (super-Earths), orbiting closer to their star than Mercury is to the Sun, and Jupiter-like gas giants are also often found close to their star. [2]
 
In a recent paper (Raymond et al. 2016) the authors suggest an alternative scenario for the formation of the Jupiter's core: it may have formed in the innermost of the protoplanetary disk and it would later be migrated to the outer region via planet-disk interactions.

The migration of the Jupiter's core may have removed solids from the inner disk by resonance and it may thus explain the absence of terrestrial planets closer than Mercury. Finally it may also have influenced the formation of the Saturn's core.

  • [1] Raymond et al 2016 (accepted to MNRAS) - Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disk? (arXiv)
  • [2] Jupiter - (Wikipedia)




Comments

Popular posts from this blog

UNIVERSE IS FINITE OR INFINITE?

Art by Moonrunner Design   At present there is no answer to this question. However I will try to list the hypothesys currently on the table with related issues.

A UNIVERSE WITHOUT A CENTER?

Image Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb. According to the standard theories of cosmology, there is no center of the universe. In a conventional explosion, material expand out from a central point and the instinct suggests that with the Big Bang happened something similar. But the Big Bang was not an explosion like that at all: it was an explosion of space, not an explosion in space . The Big Bang happened everywhere in the Universe.

New research looks at how ‘cosmic web’ of filaments alters star formation in galaxies

Cosmic Web. Credit: NASA Astronomer Gregory Rudnick sees the universe crisscrossed by something like an interstellar superhighway system. Filaments — the strands of aggregated matter that stretch millions of light years across the universe to connect galaxy clusters — are the freeways. “Galaxies will flow along filaments from less dense parts of the universe to more dense parts of the universe, kind of like cars flowing down a highway to the big city. In this case, they are going toward big clusters, being pulled by the gravity of those large concentrations of matter,” he said. “I’m interested in how galaxies are affected by the regions in which they live,” Rudnick said. “Filaments are the first place where galaxies come into contact with higher density regions of the universe. If a galaxy in a ‘rural’ part of the universe enters a dense part, I want to know how its properties change — for example, does it change the number of stars it forms, or does its shape get altered? Us...