Skip to main content

A NEW EVOLUTIVE SCENARIO FOR THE JUPITER'S CORE?

Image: This artist's conception shows a Jupiter-sized planet forming from a disk of dust and gas surrounding a young, massive star. - NASA


Astronomers have discovered nearly 500 planetary systems each with multiple planets, and typically these systems include a few planets with masses several times greater than Earth's (super-Earths), orbiting closer to their star than Mercury is to the Sun, and Jupiter-like gas giants are also often found close to their star. [2]
 
In a recent paper (Raymond et al. 2016) the authors suggest an alternative scenario for the formation of the Jupiter's core: it may have formed in the innermost of the protoplanetary disk and it would later be migrated to the outer region via planet-disk interactions.

The migration of the Jupiter's core may have removed solids from the inner disk by resonance and it may thus explain the absence of terrestrial planets closer than Mercury. Finally it may also have influenced the formation of the Saturn's core.

  • [1] Raymond et al 2016 (accepted to MNRAS) - Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disk? (arXiv)
  • [2] Jupiter - (Wikipedia)




Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ) The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.